E3

日

HORIZONTAL ACCESS DOOR

RECTANGULAR BRANCH TAKE-OFF

BELL MOUTH BRANCH TAKE-OFF

ELBOW WITH DOUBLE THICKNESS TURNING VANES

VERTICAL ACCESS DOOR

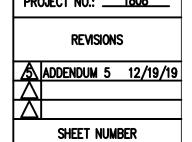
GENERAL SYMBOLS

		<u>MECHAI</u>	NICAL LEGEND		GENERAL SY	MROF2	
	PIPING SYMBOLS	DUCTW	ORK SYMBOLS (CONTINUE)	<u>PIPI</u>	NG SYMBOLS		LINETYPE SYMBOLS
SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	DESIGNATION	DESCRIPTION
CHS	CHILLED WATER SUPPLY		ROUND BRANCH TAKE-OFF	с	PIPE DROP		DEMOLITION WORK (SHOWN ON DEMOLITION PLANS)
CHR 	CHILLED WATER RETURN CONDENSATE DRAIN		ROUND DUCT DROP OFF BOTTOM	 o o	PIPE RISE		EXISTING WORK FUTURE WORK
——HS—— ———HR———	HEATING WATER SUPPLY HEATING WATER RETURN		DUCT TRANSITION	 3	PIPE CAP		NEW WORK MATCHLINE
	REFRIGERANT LIQUID REFRIGERANT SUCTION				BRANCH TAKE OFF		PART PLAN DESIGNATION
RV	REFRIGERANT VENT		SQUARE TO ROUND TRANSITION OUTPOOR CHANCE IN ELECATION (LIB OR DOWN)		PIPE DROP TEE		
<u>PIPING</u>	COMPONENTS AND SPECIALTIES	UP/DN	DUCTWORK CHANGE IN ELEVATION (UP OR DOWN)	————	PIPE RISE TEE		REFERENCE SYMBOLS
SYMBOL	DESCRIPTION		SUPPLY/OUTSIDE AIR DUCT RISER			DESIGNATION	DESCRIPTION
	PIPE GUIDE		RETURN AIR DUCT RISER	——> □	SHUTOFF VALVE (REFER TO SPECIFICATIONS FOR TYPE)		FLOOR PLAN NUMBER
——————————————————————————————————————	PIPE HANGER		EXHAUST/RELIEF AIR DUCT RISER	—————————————————————————————————————	AUTOMATIC CONTROL VALVE (TWO-WAY)	XX	PARTIAL FLOOR PLAN NUMBER ELEVATION = LETTER
<u></u> ς	PIPE SLIDE	S	ROUND DUCT RISER (SMALLER THAN 12")		AUTOMATIC CONTROL VALVE (THREE-WAY)	X X.	DETAIL = NUMBER SHEET NUMBER ON WHICH THE PARTIAL
——————————————————————————————————————	PIPE SLIDE PIPE ANCHOR		ROUND DUCT RISER (12" AND LARGER)	——- ——— ₽	BUTTERFLY VALVE		PLAN, ELEVATION OR DETAIL IS DRAWN
		MAINTANENCE ACCESS AREA	TERMINAL UNIT		AUTOMATIC BUTTERFLY VALVE		SHEET NUMBER WHERE PARTIAL PLAN, ELEVATION OR DETAIL IS TAKEN FROM
	VENTURI FLOW METER	<u> </u>	I EINMINAUE OMII		BALANCING VALVE (WITH MEMORY STOP)		SECTION LETTER
——> →	QUICK OPENING VALVE BELLOWS EXPANSION JOINT	MAINTANENCE ACCESS AREA	TERMINAL UNIT WITH REHEAT COIL		AUTOFLOW CONTROL VALVE	XX	
		$\langle x \rangle$	SUPPLY AIR VOLUME TERMINAL UNIT IDENTIFIER	—— -	CHECK VALVE	XX	SHEET NUMBER ON WHICH THE SECTION IS DRAWN
	COMPRESSION /EXPANSION JOINT	AIR DEVICE TYPE XX CFM	AIR DEVICE IDENTIFIER	_	OUTSIDE STEM AND YOKE VALVE		SHEET NUMBER WHERE THE SECTION IS TAKEN FROM
<u>•</u>	ELECTRICAL HEAT TRACE	€ CPM	POINT OF CONNECTION TO EXISTING	*	SAFETY RELIEF VALVE		
	DUPLEX STRAINER		POINT OF DISCONNECTION		STRAINER	XX,XX	PIPE CONTINUATION DESIGNATION SHEET FOR CONTINUATION, SHEET COORDINATES
- ₩-	FLEXIBLE PIPE	<u> </u>	TOILT OF DISCONNECTION	——————————————————————————————————————	STRAINER WITH BLOWDOWN VALVE	X X	OR PIPE CONTINUATION DESIGNATION LETTER
FM-	FLOW METER	73	UIPMENT DESIGNATIONS		PRESSURE REDUCING VALVE		SYSTEM CONTINUATION NOTES
<u> </u>	FLOW METER (WITH POSITIVE DISPLACEMENT)	SYMBOL	DESCRIPTION	≵	PRESSURE RELIEF VALVE		NORTH ARROW
Y	FLOW METER (PROBE STYLE)	ACC-X ACCU-X	AIR COOLED CHILLER DESIGNATION AIR COOLED CONDENSING UNIT DESIGNATION	——-Б—	BALL VALVE		POINT OF CONNECTION TO EXISTING
ſ	GOOSENECK VENT	AHU-X AMD-X	AIR HANDLING UNIT DESIGNATION AIRFLOW MONITORING DEVICE DESIGNATION	──	SHUTOFF VALVE COCK		POINT OF DISCONNECTION
	ORIFICE FITTING	AS-X AW-X	AIR SEPARATOR DESIGNATION AIR WALL DESIGNATION		GLOBE VALVE		
	POSITIVE DISPLACEMENT FLOW INDICATOR	B-X CC-X	BOILER DESIGNATION COOLING COIL DESIGNATION	~~ ———————————————————————————————————	SOLENOID VALVE		TEXT SYMBOLS
Щ	SUCTION DIFFUSER	CHP-X DSS-X	CHILLED WATER PUMP DESIGNATION DUCTLESS SPLIT SYSTEM DESIGNATION	——────────────────────────────────────	WEDGE PLUG VALVE	SYMBOL	DESCRIPTION
	PUMP	<u>EF-X</u>	EXHAUST FAN DESIGNATION			& ©	AND AT
		<u>ET-X</u> <u>F-X</u>	EXPANSION TANK DESIGNATION FILTER DESIGNATION FAN. COIL LINET DESIGNATION	≱ ——	ANGLE VALVE (BLAND VIEW)	*F	DEGREE(S) FAHRENHEIT DEGREE(S) CELSIUS
	DUCTWORK SYMBOLS	FCU-X GV-X	FAN COIL UNIT DESIGNATION GRAVITY VENTILATOR DESIGNATION HEATING WATER PLIMP DESIGNATION	≪	ANGLE VALVE (PLAN VIEW)	ø /	DIAMETER, PHASE DIVIDE BY, PER
SYMBOL	DESCRIPTION	HWP-X LGE-X	HEATING WATER PUMP DESIGNATION LOUVERED GRAVITY EXHAUST DESIGNATION		UNION	\$	DOLLAR
lacktriangle	HUMIDISTAT	PCHP-X RF-X	PRIMARY CHILLED WATER PUMP DESIGNATION RETURN FAN DESIGNATION		PIPE FLANGE		EQUALS, EQUAL TO FEET, FOOT
	THERMOSTAT	RL-X SCHP-X	RELIEF LOUVER DESIGNATION SECONDARY CHILLED WATER PUMP DESIGNATION		ECCENTRIC REDUCER (FLAT ON BOTTOM)	> <u>></u> "	GREATER THAN GREATER THAN OR EQUAL TO
√ ►	AIR FLOW	SF-X SPSS-X	SUPPLY FAN DESIGNATION STATIC PRESSURE SENSING STATION DESIGNATION		ECCENTRIC REDUCER (FLAT ON TOP)	x" <	INCH(ES) LESS THAN
← CFM	TRANSFER AIR FLOW (INDICATE CFM)	<u>SS-X</u> <u>V-X</u>	SIDESTREAM SEPERATOR VALVE DESIGNATION	2.2545	CONCENTRIC REDUCER	<u>≤</u> -	LESS THAN OR EQUAL TO MINUS
4 Dr	DOOR LOUVER	<u>VF-X</u>	VENTILATION FAN DESIGNATION	——————————————————————————————————————	FLOWMETER FITTING	* #	MULTIPLY BY, BY NUMBER, POUND
4 ncp	UNDERCUT DOOR			—— ¬ III/ P FM	FLOWMETER	% +	PERCENT PLUS
\boxtimes	SUPPLY AIR DIFFUSER				HOSE END DRAIN VALVE	±	PLUS OR MINUS
	RETURN AIR GRILLE			P	PRESSURE SENSOR		
	EXHAUST AIR GRILLE			<u> </u>	TEMPERATURE SENSOR		
<u> </u>	CIRCULAR AIR DIFFUSER				SIGHT GLASS		
<u> </u>	AIRFLOW MONITORING DEVICE				AUTOMATIC AIR VENT		
ı 	STATIC PRESSURE SENSING STATION				MANUAL AIR VENT		
#*************************************	FIRE DAMPER			<u> </u>	PRESSURE GAUGE WITH BALL VALVE		
					THERMOMETER		
The FSD I was	COMBINATION FIRE/SMOKE DAMPER				PRESSURE/TEMPERATURE PLUG		
†	VOLUME DAMPER			·	FLOW ARROW		
BDD	BACK DRAFT DAMPER						
	SMOKE DAMPER						
 	SMOKE DETECTOR						
	FLEXIBLE CONNECTION						

Architecture

Reproduction or publication of this document is not permitted without the expressed consent of the above.

Terminal Improvements F


Airport Fayetteville Regional A
400 Airport Road
Fayetteville, North Carolina 28306

DRAWN BY: BMC

REVIEWED BY: ALM

DATE: 07-19-19

PROJECT NO.: 1808

GENERAL ABBREVIATIONS

BCWR BCWS

CCMS CD

CHW

DB
DDC
DHR
DHS
DIR
DIS
DL
DN
DSP
DTR
DTS
DW

EA
EAT
EJ
EMS
ESP
ETC
EVAC
EWT
EX

FC FD FDV FF FFE FIN/FT

FIN/INCH

FOR FOS

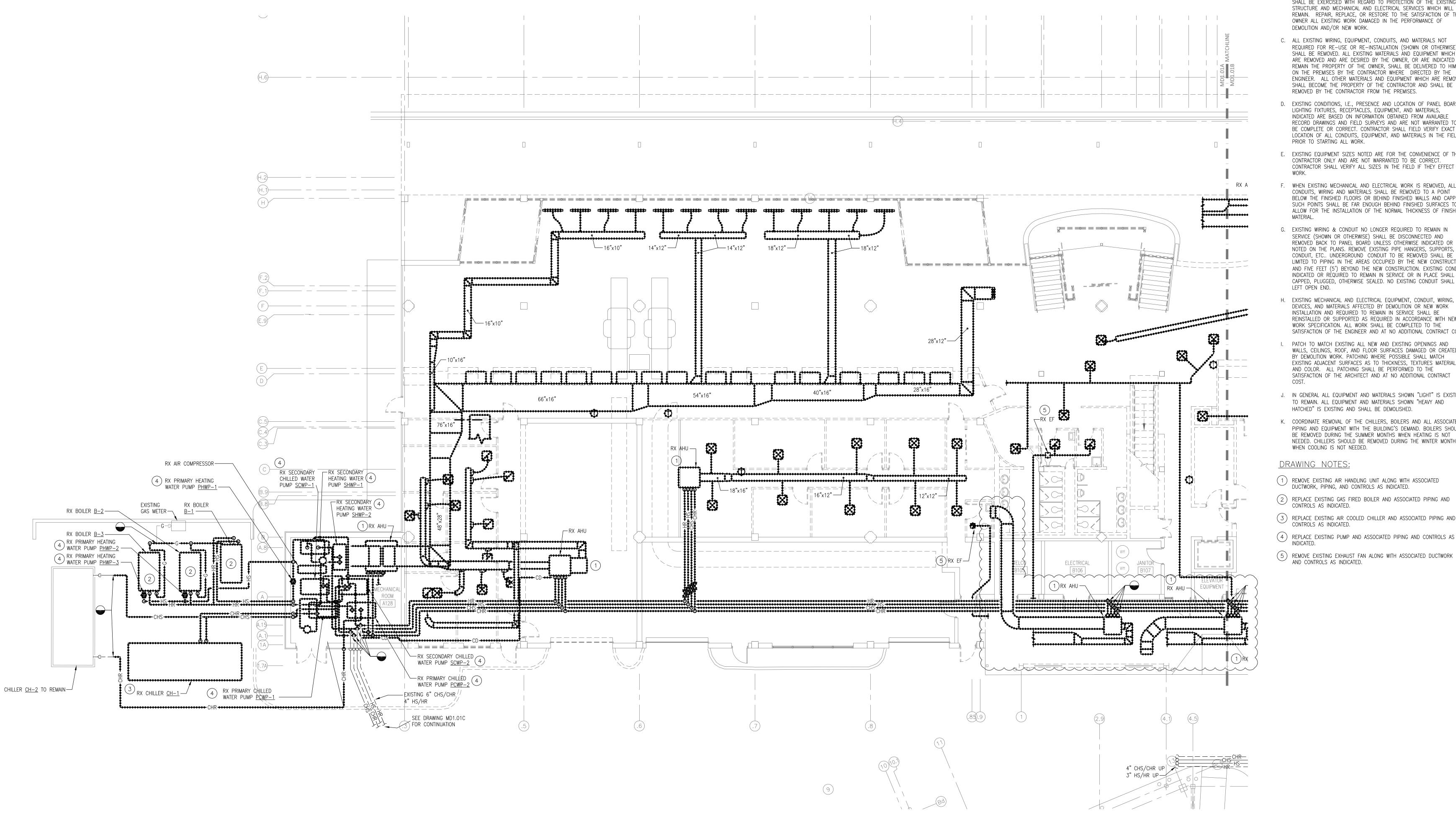
FUEL OIL RETURN FUEL OIL SUPPLY NOTE: THIS IS A STANDARD ABBREVIATION LIST. SOME ABBREVIATIONS MAY NOT APPEAR ON THE ACCOMPANYING DRAWINGS.

COMPRESSED AIR	FOT	FUEL OIL TRANSFER	OED	OPEN ENDED DUCT
AUTOMATIC AIR VENT	FOV	FUEL OIL VENT	OS&Y	OUTSIDE STEM AND YOKE
AUTOMATIC CONTROL VALVE	FPM	FEET PER MINUTE		
ACCESS DOOR, AREA DRAIN	FPS	FEET PER SECOND	P&ID	PROCESS AND INSTRUMENTATION DIAGRAM
ANTIFREEZE	FS	FLOW SWITCH	PA	PLANT AIR
ABOVE FINISHED FLOOR	FT	FOOT, FEET	PC	PUMPED CONDENSATE
AR HANDLING UNIT	FWR	FEED WATER CHERN	PCR	PUMPED CONDENSATE RECIRCULATION
ARGON GAS	FWS	FEED WATER SUPPLY	PCHR	PRIMARY CHILLED WATER RETURN
AUTOMATIC TEMPERATURE CONTROL	_		PCHS	PRIMARY CHILLED WATER SUPPLY
	G	NATURAL GAS	PCWR	PROCESS COOLING WATER RETURN
BUILDING AUTOMATION SYSTEM	GHR	GLYCOL HEATING RETURN	PCWS	PROCESS COOLING WATER SUPPLY
BOILER BLOWDOWN	GHS	GLYCOL HEATING SUPPLY	PD	PRESSURE DROP, PUMP DISCHARGE
BEARING COOLING WATER RETURN	GPH	GALLONS PER HOUR	PGR	PROCESS GLYCOL WATER RETURN
BEARING COOLING WATER SUPPLY	GPM	GALLONS PER MINUTE	PGS	PROCESS GLYCOL WATER SUPPLY
BACKDRAFT DAMPER	GR	AUTOMOTIVE LUBRICATION PIPING	PH	PHASE
BACKFLOW PREVENTER			PHR	PRIMARY HEATING RETURN
BRAKE HORSEPOWER	Н	HIGH	PHS	PRIMARY HEATING SUPPLY
BUILDING MANAGEMENT SYSTEM	HB	HOSE BIBB	PIV	POST INDICATING VALVE
BLOW OFF	HED	HOSE END DRAIN VALVE	PPH	POUNDS PER HOUR
BRITISH THERMAL UNIT	HP	HORSEPOWER	PRV	PRESSURE REDUCING VALVE, PRESSURE REGULATING VALVE
BRITISH THERMAL UNIT PER HOUR	HPR	HIGH PRESSURE STEAM RETURN	PSI	POUNDS PER SQUARE INCH
	HPS	HIGH PRESSURE STEAM SUPPLY	PSIG	POUNDS PER SQUARE INCH GAUGE
DEGREE(S) CELSIUS	HR	HEATING WATER RETURN		
CONTROL AIR	HRR	HEAT RECOVERY RETURN	RA	RETURN AIR, RELIEF AIR
CONTINUOUS BLOWDOWN	HRS	HEAT RECOVERY SUPPLY	RD	REFRIGERANT DISCHARGE
CAMPUS CONDENSATE	HS	HEATING WATER SUPPLY	RH	RELATIVE HUMIDITY
CENTRAL CONTROL AND MONITORING SYSTEM	HT	HEIGHT	RHR	REHEAT WATER RETURN
CONDENSATE DRAIN	HTHR	HIGH TEMPERATURE HEATING WATER RETURN	RHS	REHEAT WATER SUPPLY
CHEMICAL FEED	HTHS	HIGH TEMPERATURE HEATING WATER SUPPLY		REFRIGERANT LIQUID
			RL	
CUBIC FEET PER MINUTE	HW	HOT WATER PEOPLE ATION	ROR	REVERSE OSMOSIS WATER RETURN
CHILLED WATER RETURN	HWR	HOT WATER RECIRCULATION	ROS	REVERSE OSMOSIS WATER SUPPLY
CHILLED WATER SUPPLY	HZ	HERTZ	RPM	REVOLUTIONS PER MINUTE
CHILLED WATER			RS	REFRIGERANT SUCTION
CLEANOUT	IA	INSTRUMENT AIR	RV	RELIEF VENT, REFRIGERANT VENT
CARBON DIOXIDE	ICW	INDUSTRIAL COLD WATER	RX	REMOVE EXISTING
CLEAN STEAM	IHW	INDUSTRIAL HOT WATER		
COLD WATER, CITY WATER	IHR	INDUSTRIAL HOT WATER RECIRCULATION	SA	SUPPLY AIR
CONDENSER WATER RETURN	IN	INCH, INCHES	SAN	SANITARY, SOIL, WASTE
CONDENSER WATER SUPPLY	INV EL	INVERT ELEVATION	SCHR	SECONDARY CHILLED WATER RETURN
COMPENSER WATER COLLET	1114 EE		SCHS	SECONDARY CHILLED WATER SUPPLY
DEEP, DRAIN WATER	KW	KILOWATTS	SD	STORM DRAIN, SMOKE DETECTOR
·	r\ vv	RILOWATTS		
DECIBEL, DRY BULB		LONG LENGTH	SF	SQUARE FOOT
DIRECT DIGITAL CONTROL	L	LONG, LENGTH	SHR	SECONDARY HEATING WATER RETURN
DISTRIBUTION HEATING WATER RETURN	LA	LABORATORY AIR	SHS	SECONDARY HEATING WATER SUPPLY
DISTRIBUTION HEATING WATER SUPPLY	LAT	LEAVING AIR TEMPERATURE	SL	SOUND LINING
DEIONIZED WATER RETURN	LBS	POUNDS	SP	STATIC PRESSURE
DEIONIZED WATER SUPPLY	LBS/HR	POUNDS PER HOUR	SPR	SPRINKLER LINE
DOOR LOUVER	LN	LIQUID NITROGEN	SS	STAINLESS STEEL
DOWN	LP	LIQUID PROPANE	SQ FT	SQUARE FOOT
DRY SPRINKLER PIPE	LPG	LIQUID PETROLEUM GAS	SW	SOFT WATER
DUAL TEMPERATURE RETURN	LPR	LOW PRESSURE STEAM RETURN	311	SOLI WILL
DUAL TEMPERATURE SUPPLY	LPS	LOW PRESSURE STEAM SUPPLY	ΔT	TEMPERATURE DIFFERENCE
DISTILLED WATER	LV	LABORATORY VENT, LABORATORY VACUUM	TS	TAMPER SWITCH
57/14/10T AID	LW	LABORATORY WASTE	TSP	TOTAL STATIC PRESSURE
EXHAUST AIR	LWT	LEAVING WATER TEMPERATURE	TWR	TEMPERED WATER RETURN
ENTERING AIR TEMPERATURE			TWS	TEMPERED WATER SUPPLY
EXPANSION JOINT	MA	MEDICAL AIR	TW	TREATED WATER
ENERGY MANAGEMENT SYSTEM	MAV	MANUAL AIR VENT	TYP	TYPICAL
EXTERNAL STATIC PRESSURE	MBH	THOUSAND BRITISH THERMAL UNITS PER HOUR		
ETCETERA	MCC	MOTOR CONTROL CENTER	UCD	UNDERCUT DOOR
GAS EVACUATION	MO	MOTOR OIL PIPING	UL	UNDERWRITERS LABORATORIES
ENTERING WATER TEMPERATURE	MOD	MOTOR OPERATED DAMPER		
EXISTING	MPR	MEDIUM PRESSURE STEAM RETURN	V	VACUUM, VOLTS
EXISTINO		MEDIUM PRESSURE STEAM SUPPLY	VD	VOLUME DAMPER
DEODEE(C) EALIDENHIEIT	MPS			
DEGREE(S) FAHRENHEIT	MV	MEDICAL VACUUM	VFD	VARIABLE FREQUENCY DRIVE
FIRE LINE			VPD	VACUUM PUMP DISCHARGE
FLEXIBLE CONNECTION	N	NITROGEN	VSD	VARIABLE SPEED DRIVE
FIRE DAMPER, FOUNDATION DRAIN	NA	NOT APPLICABLE	VTR	VENT THROUGH ROOF
FIRE DEPARTMENT VALVE	NC	NOISE CRITERIA, NORMALLY CLOSED		
FINISHED FLOOR	NFPA	NATIONAL FIRE PROTECTION ASSOCIATION	W	WATTS, WIDE
FINISHED FLOOR ELEVATION	NO	NORMALLY OPEN, NITROUS OXIDE	WB	WET BULB
FINS PER FEET	NPSH	NET POSITIVE SUCTION HEAD	WC	WATER COLUMN
FINS PER INCH	141 511	come coonon new	WG	WATER GAUGE
FLOWMETER	0	OXYGEN	WH	WATER GAOGE WALL HYDRANT
	•			
FLOWMETER FITTING	OA	OUTSIDE AIR	WWF	WELDED WIRE FABRIC
FUEL OIL FILL	OD	OVERFLOW DRAIN	WWM	WELDED WIRE MESH
FUEL OIL OVERFLOW				

Reproduction or publication of this document is not permitted without the expressed consent of the above.

RMF ENGINEERING, INC. 8720 Red Oak Blvd, Suite 370 Charlotte, NC 28217 P: 704.909.6612 NC license No: C-1126 RMF Project No. 2153223 F0

 \sim Improvements Terminal


Airline Airport Regional eville Fayette

DRAWN BY: EDD

REVIEWED BY: ALM

DATE: 07-19-19

PROJECT NO.: 1808

- A. NOTIFY THE OWNER, IN WRITING, AT LEAST SEVEN (7) DAYS IN ADVANCE OF ALL REQUIRED SHUTDOWNS OF ELECTRICAL SERVICE, OR OTHER UTILITIES. UPON WRITTEN RECEIPT OF APPROVAL FROM OWNER, SHUTDOWNS SHALL BE PERFORMED DURING HOURS AS DIRECTED BY THE OWNER AND SHALL BE ACCOMPLISHED AT NO ADDITIONAL CONTRACT COST. AT THE END OF EACH SHUT DOWN ALL SERVICES SHALL BE RESTORED.
- B. WHEN WORKING IN AND AROUND THE EXISTING BUILDING, EXTREME CARE SHALL BE EXERCISED WITH REGARD TO PROTECTION OF THE EXISTING STRUCTURE AND MECHANICAL AND ELECTRICAL SERVICES WHICH WILL REMAIN. REPAIR, REPLACE, OR RESTORE TO THE SATISFACTION OF THE OWNER ALL EXISTING WORK DAMAGED IN THE PERFORMANCE OF

DEMOLITION AND/OR NEW WORK.

- C. ALL EXISTING WIRING, EQUIPMENT, CONDUITS, AND MATERIALS NOT REQUIRED FOR RE-USE OR RE-INSTALLATION (SHOWN OR OTHERWISE) SHALL BE REMOVED. ALL EXISTING MATERIALS AND EQUIPMENT WHICH ARE REMOVED AND ARE DESIRED BY THE OWNER, OR ARE INDICATED TO REMAIN THE PROPERTY OF THE OWNER, SHALL BE DELIVERED TO HIM ON THE PREMISES BY THE CONTRACTOR WHERE DIRECTED BY THE ENGINEER. ALL OTHER MATERIALS AND EQUIPMENT WHICH ARE REMOVED SHALL BECOME THE PROPERTY OF THE CONTRACTOR AND SHALL BE REMOVED BY THE CONTRACTOR FROM THE PREMISES.
- D. EXISTING CONDITIONS, I.E., PRESENCE AND LOCATION OF PANEL BOARDS, LIGHTING FIXTURES, RECEPTACLES, EQUIPMENT, AND MATERIALS, INDICATED ARE BASED ON INFORMATION OBTAINED FROM AVAILABLE RECORD DRAWINGS AND FIELD SURVEYS AND ARE NOT WARRANTED TO BE COMPLETE OR CORRECT. CONTRACTOR SHALL FIELD VERIFY EXACT LOCATION OF ALL CONDUITS, EQUIPMENT, AND MATERIALS IN THE FIELD PRIOR TO STARTING ALL WORK.
- E. EXISTING EQUIPMENT SIZES NOTED ARE FOR THE CONVENIENCE OF THE CONTRACTOR ONLY AND ARE NOT WARRANTED TO BE CORRECT. CONTRACTOR SHALL VERIFY ALL SIZES IN THE FIELD IF THEY EFFECT HIS
- F. WHEN EXISTING MECHANICAL AND ELECTRICAL WORK IS REMOVED, ALL CONDUITS, WIRING AND MATERIALS SHALL BE REMOVED TO A POINT BELOW THE FINISHED FLOORS OR BEHIND FINISHED WALLS AND CAPPED. SUCH POINTS SHALL BE FAR ENOUGH BEHIND FINISHED SURFACES TO ALLOW FOR THE INSTALLATION OF THE NORMAL THICKNESS OF FINISHED
- G. EXISTING WIRING & CONDUIT NO LONGER REQUIRED TO REMAIN IN SERVICE (SHOWN OR OTHERWISE) SHALL BE DISCONNECTED AND REMOVED BACK TO PANEL BOARD UNLESS OTHERWISE INDICATED OR NOTED ON THE PLANS. REMOVE EXISTING PIPE HANGERS, SUPPORTS, CONDUIT, ETC.. UNDERGROUND CONDUIT TO BE REMOVED SHALL BE LIMITED TO PIPING IN THE AREAS OCCUPIED BY THE NEW CONSTRUCTION AND FIVE FEET (5') BEYOND THE NEW CONSTRUCTION. EXISTING CONDUIT INDICATED OR REQUIRED TO REMAIN IN SERVICE OR IN PLACE SHALL BE CAPPED, PLUGGED, OTHERWISE SEALED. NO EXISTING CONDUIT SHALL BE LEFT OPEN END.
- H. EXISTING MECHANICAL AND ELECTRICAL EQUIPMENT, CONDUIT, WIRING, DEVICES, AND MATERIALS AFFECTED BY DEMOLITION OR NEW WORK INSTALLATION AND REQUIRED TO REMAIN IN SERVICE SHALL BE REINSTALLED OR SUPPORTED AS REQUIRED IN ACCORDANCE WITH NEW WORK SPECIFICATION. ALL WORK SHALL BE COMPLETED TO THE SATISFACTION OF THE ENGINEER AND AT NO ADDITIONAL CONTRACT COST. PATCH TO MATCH EXISTING ALL NEW AND EXISTING OPENINGS AND WALLS, CEILINGS, ROOF, AND FLOOR SURFACES DAMAGED OR CREATED BY DEMOLITION WORK. PATCHING WHERE POSSIBLE SHALL MATCH EXISTING ADJACENT SURFACES AS TO THICKNESS, TEXTURES MATERIALS,
- J. IN GENERAL ALL EQUIPMENT AND MATERIALS SHOWN "LIGHT" IS EXISTING TO REMAIN. ALL EQUIPMENT AND MATERIALS SHOWN "HEAVY AND HATCHED" IS EXISTING AND SHALL BE DEMOLISHED.

AND COLOR. ALL PATCHING SHALL BE PERFORMED TO THE SATISFACTION OF THE ARCHITECT AND AT NO ADDITIONAL CONTRACT

K. COORDINATE REMOVAL OF THE CHILLERS, BOILERS AND ALL ASSOCIATED PIPING AND EQUIPMENT WITH THE BUILDING'S DEMAND. BOILERS SHOULD BE REMOVED DURING THE SUMMER MONTHS WHEN HEATING IS NOT NEEDED. CHILLERS SHOULD BE REMOVED DURING THE WINTER MONTHS WHEN COOLING IS NOT NEEDED.

DRAWING NOTES:

AND CONTROLS AS INDICATED.

COST.

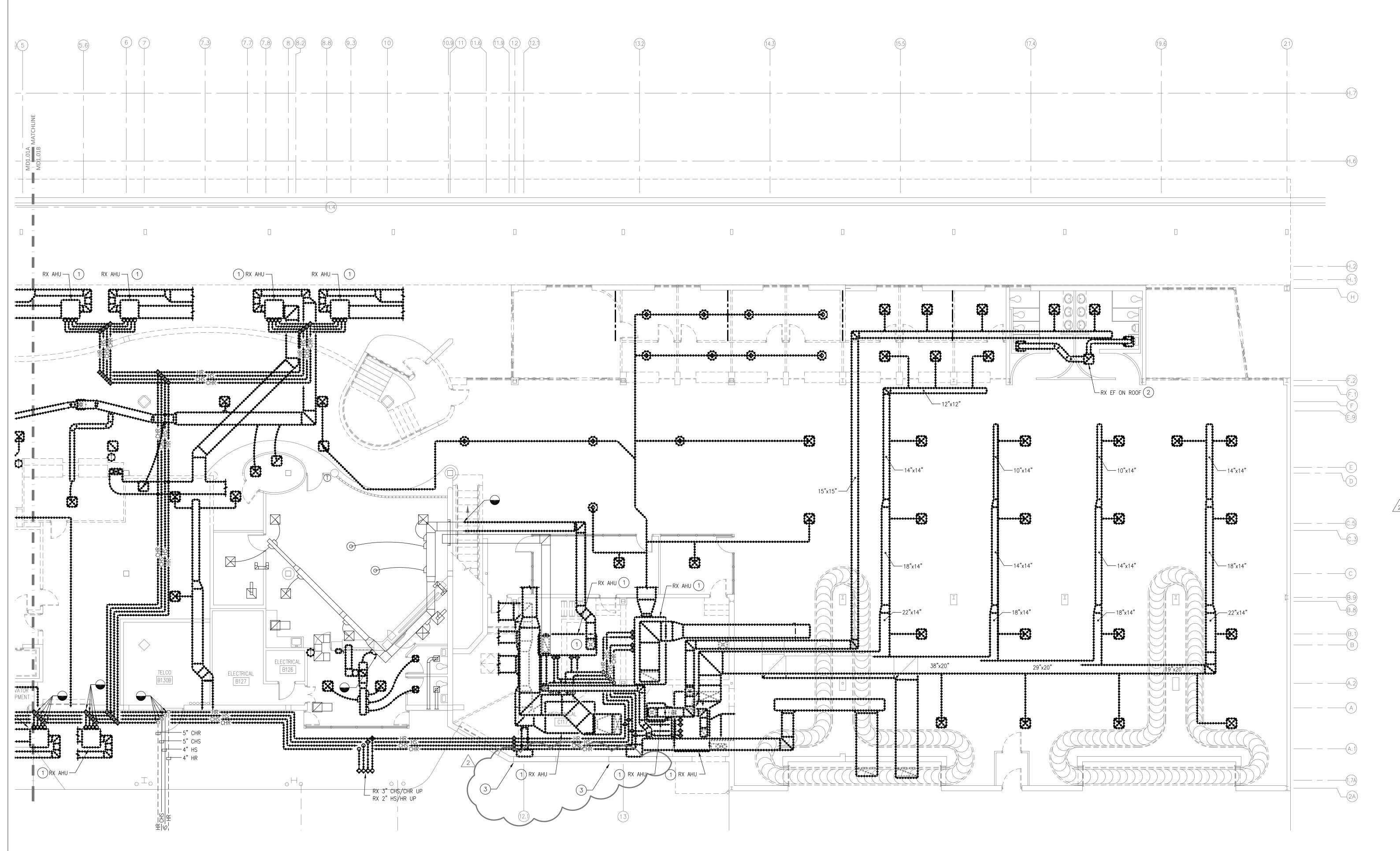
REMOVE EXISTING AIR HANDLING UNIT ALONG WITH ASSOCIATED DUCTWORK, PIPING, AND CONTROLS AS INDICATED.

GRAPHIC SCALE

SCALE: 1/8"=1'-0"UNIT OF MEASURE: FEET

- (2) REPLACE EXISTING GAS FIRED BOILER AND ASSOCIATED PIPING AND CONTROLS AS INDICATED.
- (3) REPLACE EXISTING AIR COOLED CHILLER AND ASSOCIATED PIPING AND CONTROLS AS INDICATED.
- (4) REPLACE EXISTING PUMP AND ASSOCIATED PIPING AND CONTROLS AS

 \Box + en 0 pr Ξ erminal **—** Φ \triangleleft Q \triangleleft gion \simeq


FIRE RATED WALL LEGEND 1 HOUR FIRE PARTITION 1 HOUR FIRE BARRIER ayett MAIN TERMINAL REVIEWED BY: <u>ALM</u> DATE: <u>07-19-19</u> PROJECT NO.: ____1808 REVISIONS

SHEET NUMBER

Architecture

production or publication of this document is

RMF ENGINEERING, INC. 8720 Red Oak Blvd, Suite 370 Charlotte, NC 28217 P 704 909 6612 NC license No: C-1126 RMF Project No. 2153223 F0

- A. NOTIFY THE OWNER, IN WRITING, AT LEAST SEVEN (7) DAYS IN ADVANCE OF ALL REQUIRED SHUTDOWNS OF ELECTRICAL SERVICE, OR OTHER UTILITIES. UPON WRITTEN RECEIPT OF APPROVAL FROM OWNER, SHUTDOWNS SHALL BE PERFORMED DURING HOURS AS DIRECTED BY THE OWNER AND SHALL BE ACCOMPLISHED AT NO ADDITIONAL CONTRACT COST. AT THE END OF EACH SHUT DOWN ALL SERVICES SHALL BE RESTORED.
- B. WHEN WORKING IN AND AROUND THE EXISTING BUILDING, EXTREME CARE SHALL BE EXERCISED WITH REGARD TO PROTECTION OF THE EXISTING STRUCTURE AND MECHANICAL AND ELECTRICAL SERVICES WHICH WILL REMAIN. REPAIR, REPLACE, OR RESTORE TO THE SATISFACTION OF THE OWNER ALL EXISTING WORK DAMAGED IN THE PERFORMANCE OF DEMOLITION AND/OR NEW WORK.
- C. ALL EXISTING WIRING, EQUIPMENT, CONDUITS, AND MATERIALS NOT REQUIRED FOR RE—USE OR RE—INSTALLATION (SHOWN OR OTHERWISE) SHALL BE REMOVED. ALL EXISTING MATERIALS AND EQUIPMENT WHICH ARE REMOVED AND ARE DESIRED BY THE OWNER, OR ARE INDICATED TO REMAIN THE PROPERTY OF THE OWNER, SHALL BE DELIVERED TO HIM ON THE PREMISES BY THE CONTRACTOR WHERE DIRECTED BY THE ENGINEER. ALL OTHER MATERIALS AND EQUIPMENT WHICH ARE REMOVED SHALL BECOME THE PROPERTY OF THE CONTRACTOR AND SHALL BE REMOVED BY THE CONTRACTOR FROM THE PREMISES.
- D. EXISTING CONDITIONS, I.E., PRESENCE AND LOCATION OF PANEL BOARDS, LIGHTING FIXTURES, RECEPTACLES, EQUIPMENT, AND MATERIALS, INDICATED ARE BASED ON INFORMATION OBTAINED FROM AVAILABLE RECORD DRAWINGS AND FIELD SURVEYS AND ARE NOT WARRANTED TO BE COMPLETE OR CORRECT. CONTRACTOR SHALL FIELD VERIFY EXACT LOCATION OF ALL CONDUITS, EQUIPMENT, AND MATERIALS IN THE FIELD PRIOR TO STARTING ALL WORK.
- E. EXISTING EQUIPMENT SIZES NOTED ARE FOR THE CONVENIENCE OF THE CONTRACTOR ONLY AND ARE NOT WARRANTED TO BE CORRECT.

 CONTRACTOR SHALL VERIFY ALL SIZES IN THE FIELD IF THEY EFFECT HIS
- F. WHEN EXISTING MECHANICAL AND ELECTRICAL WORK IS REMOVED, ALL CONDUITS, WIRING AND MATERIALS SHALL BE REMOVED TO A POINT BELOW THE FINISHED FLOORS OR BEHIND FINISHED WALLS AND CAPPED. SUCH POINTS SHALL BE FAR ENOUGH BEHIND FINISHED SURFACES TO ALLOW FOR THE INSTALLATION OF THE NORMAL THICKNESS OF FINISHED MATERIAL.
- G. EXISTING WIRING & CONDUIT NO LONGER REQUIRED TO REMAIN IN SERVICE (SHOWN OR OTHERWISE) SHALL BE DISCONNECTED AND REMOVED BACK TO PANEL BOARD UNLESS OTHERWISE INDICATED OR NOTED ON THE PLANS. REMOVE EXISTING PIPE HANGERS, SUPPORTS, CONDUIT, ETC.. UNDERGROUND CONDUIT TO BE REMOVED SHALL BE LIMITED TO PIPING IN THE AREAS OCCUPIED BY THE NEW CONSTRUCTION AND FIVE FEET (5') BEYOND THE NEW CONSTRUCTION. EXISTING CONDUIT INDICATED OR REQUIRED TO REMAIN IN SERVICE OR IN PLACE SHALL BE CAPPED, PLUGGED, OTHERWISE SEALED. NO EXISTING CONDUIT SHALL BE LEFT OPEN END.
- H. EXISTING MECHANICAL AND ELECTRICAL EQUIPMENT, CONDUIT, WIRING, DEVICES, AND MATERIALS AFFECTED BY DEMOLITION OR NEW WORK INSTALLATION AND REQUIRED TO REMAIN IN SERVICE SHALL BE REINSTALLED OR SUPPORTED AS REQUIRED IN ACCORDANCE WITH NEW WORK SPECIFICATION. ALL WORK SHALL BE COMPLETED TO THE SATISFACTION OF THE ENGINEER AND AT NO ADDITIONAL CONTRACT COST.
- I. PATCH TO MATCH EXISTING ALL NEW AND EXISTING OPENINGS AND WALLS, CEILINGS, ROOF, AND FLOOR SURFACES DAMAGED OR CREATED BY DEMOLITION WORK. PATCHING WHERE POSSIBLE SHALL MATCH EXISTING ADJACENT SURFACES AS TO THICKNESS, TEXTURES MATERIALS, AND COLOR. ALL PATCHING SHALL BE PERFORMED TO THE SATISFACTION OF THE ARCHITECT AND AT NO ADDITIONAL CONTRACT COST.
- J. IN GENERAL ALL EQUIPMENT AND MATERIALS SHOWN "LIGHT" IS EXISTING TO REMAIN. ALL EQUIPMENT AND MATERIALS SHOWN "HEAVY AND HATCHED" IS EXISTING AND SHALL BE DEMOLISHED.

DRAWING NOTES:

- 1 REMOVE EXISTING AIR HANDLING UNIT ALONG WITH ASSOCIATED DUCTWORK, PIPING, AND CONTROLS AS INDICATED.
- DUCTWORK, PIPING, AND CONTROLS AS INDICATED.

 2 REMOVE EXISTING EXHAUST FAN ALONG WITH ASSOCIATED DUCTWORK AND CONTROLS AS INDICATED.
- EXISTING LOUVER TO REMAIN. REMOVE ANY PLENUM, DUCTWORK AND BLANK-OFFS ASSOCIATED WITH THE LOUVER.

vetteville Regional Airport — Airline Terminal Improvements Pa

SHEET NUMBER

 \sim

FIRE RATED WALL LEGEND

1 HOUR FIRE PARTITION
1 HOUR FIRE BARRIER

DRAWN BY: BMC
REVISIONS

ADDENDUM 3 08/14/
RF1-17 08/04/

<u>GRAPHIC SCALE</u>

SCALE: 1/8"=1'-0" UNIT OF MEASURE: FEET Architecture

654 Hay Street, Suite 4
Fayetteville, NC 28301
Phone: (910) 223-2186


Architecture

Architecture

654 Hay Street, Suite 4
Fayetteville, NC 28301
Phone: (910) 223-2186
E-Mail: gordon@
gordonjohnsonarchitecture.com
© Copyright 2019
Gordon E. Johnson, AIA
Reproduction or publication of this document is not permitted without the expressed consent of the above.

Legal Disclaimer:
This document is intended to comply with the requirements of the American with Disabilities Act (ADA). However, Architects and Engineers are not iconeal to interpret loses or pive obtice

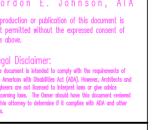
- A. NOTIFY THE OWNER, IN WRITING, AT LEAST SEVEN (7) DAYS IN ADVANCE OF ALL REQUIRED SHUTDOWNS OF ELECTRICAL SERVICE, OR OTHER UTILITIES. UPON WRITTEN RECEIPT OF APPROVAL FROM OWNER, SHUTDOWNS SHALL BE PERFORMED DURING HOURS AS DIRECTED BY THE OWNER AND SHALL BE ACCOMPLISHED AT NO ADDITIONAL CONTRACT COST. AT THE END OF EACH SHUT DOWN ALL SERVICES SHALL BE RESTORED.
- B. WHEN WORKING IN AND AROUND THE EXISTING BUILDING, EXTREME CARE SHALL BE EXERCISED WITH REGARD TO PROTECTION OF THE EXISTING STRUCTURE AND MECHANICAL AND ELECTRICAL SERVICES WHICH WILL REMAIN. REPAIR, REPLACE, OR RESTORE TO THE SATISFACTION OF THE OWNER ALL EXISTING WORK DAMAGED IN THE PERFORMANCE OF

DEMOLITION AND/OR NEW WORK.

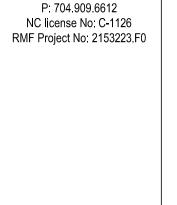
- C. ALL EXISTING WIRING, EQUIPMENT, CONDUITS, AND MATERIALS NOT REQUIRED FOR RE-USE OR RE-INSTALLATION (SHOWN OR OTHERWISE) SHALL BE REMOVED. ALL EXISTING MATERIALS AND EQUIPMENT WHICH ARE REMOVED AND ARE DESIRED BY THE OWNER, OR ARE INDICATED TO REMAIN THE PROPERTY OF THE OWNER, SHALL BE DELIVERED TO HIM ON THE PREMISES BY THE CONTRACTOR WHERE DIRECTED BY THE ENGINEER. ALL OTHER MATERIALS AND EQUIPMENT WHICH ARE REMOVED SHALL BECOME THE PROPERTY OF THE CONTRACTOR AND SHALL BE REMOVED BY THE CONTRACTOR FROM THE PREMISES.
- D. EXISTING CONDITIONS, I.E., PRESENCE AND LOCATION OF PANEL BOARDS, LIGHTING FIXTURES, RECEPTACLES, EQUIPMENT, AND MATERIALS, INDICATED ARE BASED ON INFORMATION OBTAINED FROM AVAILABLE RECORD DRAWINGS AND FIELD SURVEYS AND ARE NOT WARRANTED TO BE COMPLETE OR CORRECT. CONTRACTOR SHALL FIELD VERIFY EXACT LOCATION OF ALL CONDUITS, EQUIPMENT, AND MATERIALS IN THE FIELD PRIOR TO STARTING ALL WORK.
- E. EXISTING EQUIPMENT SIZES NOTED ARE FOR THE CONVENIENCE OF THE CONTRACTOR ONLY AND ARE NOT WARRANTED TO BE CORRECT. CONTRACTOR SHALL VERIFY ALL SIZES IN THE FIELD IF THEY EFFECT HIS
- F. WHEN EXISTING MECHANICAL AND ELECTRICAL WORK IS REMOVED, ALL CONDUITS, WIRING AND MATERIALS SHALL BE REMOVED TO A POINT BELOW THE FINISHED FLOORS OR BEHIND FINISHED WALLS AND CAPPED. SUCH POINTS SHALL BE FAR ENOUGH BEHIND FINISHED SURFACES TO ALLOW FOR THE INSTALLATION OF THE NORMAL THICKNESS OF FINISHED
- G. EXISTING WIRING & CONDUIT NO LONGER REQUIRED TO REMAIN IN SERVICE (SHOWN OR OTHERWISE) SHALL BE DISCONNECTED AND REMOVED BACK TO PANEL BOARD UNLESS OTHERWISE INDICATED OR NOTED ON THE PLANS. REMOVE EXISTING PIPE HANGERS, SUPPORTS, CONDUIT, ETC.. UNDERGROUND CONDUIT TO BE REMOVED SHALL BE LIMITED TO PIPING IN THE AREAS OCCUPIED BY THE NEW CONSTRUCTION AND FIVE FEET (5') BEYOND THE NEW CONSTRUCTION. EXISTING CONDUIT INDICATED OR REQUIRED TO REMAIN IN SERVICE OR IN PLACE SHALL BE CAPPED, PLUGGED, OTHERWISE SEALED. NO EXISTING CONDUIT SHALL BE LEFT OPEN END.
- H. EXISTING MECHANICAL AND ELECTRICAL EQUIPMENT, CONDUIT, WIRING, DEVICES, AND MATERIALS AFFECTED BY DEMOLITION OR NEW WORK INSTALLATION AND REQUIRED TO REMAIN IN SERVICE SHALL BE REINSTALLED OR SUPPORTED AS REQUIRED IN ACCORDANCE WITH NEW WORK SPECIFICATION. ALL WORK SHALL BE COMPLETED TO THE SATISFACTION OF THE ENGINEER AND AT NO ADDITIONAL CONTRACT COST. I. PATCH TO MATCH EXISTING ALL NEW AND EXISTING OPENINGS AND WALLS, CEILINGS, ROOF, AND FLOOR SURFACES DAMAGED OR CREATED BY DEMOLITION WORK. PATCHING WHERE POSSIBLE SHALL MATCH EXISTING ADJACENT SURFACES AS TO THICKNESS, TEXTURES MATERIALS, AND COLOR. ALL PATCHING SHALL BE PERFORMED TO THE SATISFACTION OF THE ARCHITECT AND AT NO ADDITIONAL CONTRACT
- J. IN GENERAL ALL EQUIPMENT AND MATERIALS SHOWN "LIGHT" IS EXISTING TO REMAIN. ALL EQUIPMENT AND MATERIALS SHOWN "HEAVY AND HATCHED" IS EXISTING AND SHALL BE DEMOLISHED.

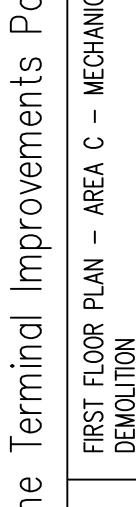
- 1 REMOVE EXISTING EXHAUST FAN ALONG WITH ASSOCIATED DUCTWORK AND CONTROLS AS INDICATED.
- DISCONNECT CEILING DIFFUSER FROM EXISTING DUCTWORK. DUCTWORK IS TO REMAIN AND BE REUSED FOR A NEW CEILING DIFFUSER INSTALLED IN THE SAME LOCATION.
- 3 EXISTING AHU IS TO BE REMOVED AND REPLACED. EXISTING DUCTWORK AND CHILLED/HEATING WATER PIPING IS TO REMAIN AND BE USED TO TIE INTO THE REPLACEMENT AHU.

FIRE RATED WALL LEGEND

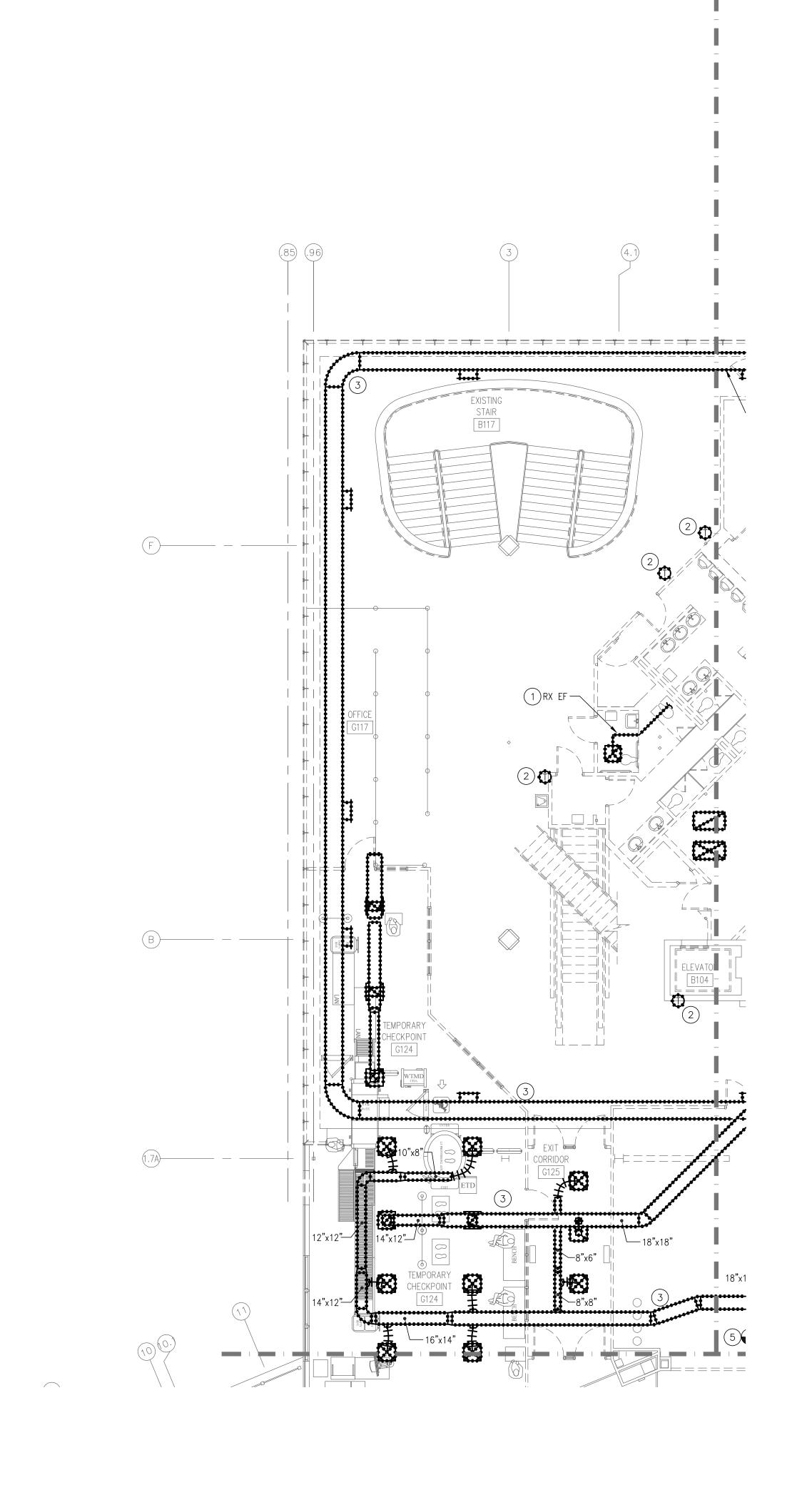

<u>GRAPHIC SCALE</u>

SCALE: 1/8"=1'-0" UNIT OF MEASURE: FEET


1 HOUR FIRE PARTITION



Architecture



 \sim

ayett

DATE: <u>07–19–19</u> PROJECT NO.: <u>1808</u> REVISIONS

A. NOTIFY THE OWNER, IN WRITING, AT LEAST SEVEN (7) DAYS IN ADVANCE OF ALL REQUIRED SHUTDOWNS OF ELECTRICAL SERVICE, OR OTHER UTILITIES. UPON WRITTEN RECEIPT OF APPROVAL FROM OWNER, SHUTDOWNS SHALL BE PERFORMED DURING HOURS AS DIRECTED BY THE OWNER AND SHALL BE ACCOMPLISHED AT NO ADDITIONAL CONTRACT COST. AT THE END OF EACH SHUT DOWN ALL SERVICES SHALL BE RESTORED.

DEMOLITION AND/OR NEW WORK.

B. WHEN WORKING IN AND AROUND THE EXISTING BUILDING, EXTREME CARE SHALL BE EXERCISED WITH REGARD TO PROTECTION OF THE EXISTING STRUCTURE AND MECHANICAL AND ELECTRICAL SERVICES WHICH WILL REMAIN. REPAIR, REPLACE, OR RESTORE TO THE SATISFACTION OF THE

OWNER ALL EXISTING WORK DAMAGED IN THE PERFORMANCE OF

- C. ALL EXISTING WIRING, EQUIPMENT, CONDUITS, AND MATERIALS NOT REQUIRED FOR RE-USE OR RE-INSTALLATION (SHOWN OR OTHERWISE) SHALL BE REMOVED. ALL EXISTING MATERIALS AND EQUIPMENT WHICH ARE REMOVED AND ARE DESIRED BY THE OWNER, OR ARE INDICATED TO REMAIN THE PROPERTY OF THE OWNER, SHALL BE DELIVERED TO HIM ON THE PREMISES BY THE CONTRACTOR WHERE DIRECTED BY THE ENGINEER. ALL OTHER MATERIALS AND EQUIPMENT WHICH ARE REMOVED SHALL BECOME THE PROPERTY OF THE CONTRACTOR AND SHALL BE REMOVED BY THE CONTRACTOR FROM THE PREMISES.
- D. EXISTING CONDITIONS, I.E., PRESENCE AND LOCATION OF PANEL BOARDS, LIGHTING FIXTURES, RECEPTACLES, EQUIPMENT, AND MATERIALS, INDICATED ARE BASED ON INFORMATION OBTAINED FROM AVAILABLE RECORD DRAWINGS AND FIELD SURVEYS AND ARE NOT WARRANTED TO BE COMPLETE OR CORRECT. CONTRACTOR SHALL FIELD VERIFY EXACT LOCATION OF ALL CONDUITS, EQUIPMENT, AND MATERIALS IN THE FIELD PRIOR TO STARTING ALL WORK.
- E. EXISTING EQUIPMENT SIZES NOTED ARE FOR THE CONVENIENCE OF THE CONTRACTOR ONLY AND ARE NOT WARRANTED TO BE CORRECT. CONTRACTOR SHALL VERIFY ALL SIZES IN THE FIELD IF THEY EFFECT HIS
- F. WHEN EXISTING MECHANICAL AND ELECTRICAL WORK IS REMOVED, ALL CONDUITS, WIRING AND MATERIALS SHALL BE REMOVED TO A POINT BELOW THE FINISHED FLOORS OR BEHIND FINISHED WALLS AND CAPPED. SUCH POINTS SHALL BE FAR ENOUGH BEHIND FINISHED SURFACES TO ALLOW FOR THE INSTALLATION OF THE NORMAL THICKNESS OF FINISHED MATERIAL.
- G. EXISTING WIRING & CONDUIT NO LONGER REQUIRED TO REMAIN IN SERVICE (SHOWN OR OTHERWISE) SHALL BE DISCONNECTED AND REMOVED BACK TO PANEL BOARD UNLESS OTHERWISE INDICATED OR NOTED ON THE PLANS. REMOVE EXISTING PIPE HANGERS, SUPPORTS, CONDUIT, ETC.. UNDERGROUND CONDUIT TO BE REMOVED SHALL BE LIMITED TO PIPING IN THE AREAS OCCUPIED BY THE NEW CONSTRUCTION AND FIVE FEET (5') BEYOND THE NEW CONSTRUCTION. EXISTING CONDUIT INDICATED OR RÈQUIRED TO REMAIN IN SERVICE OR IN PLACE SHALL BE CAPPED, PLUGGED, OTHERWISE SEALED. NO EXISTING CONDUIT SHALL BE LEFT OPEN END.
- H. EXISTING MECHANICAL AND ELECTRICAL EQUIPMENT, CONDUIT, WIRING, DEVICES, AND MATERIALS AFFECTED BY DEMOLITION OR NEW WORK INSTALLATION AND REQUIRED TO REMAIN IN SERVICE SHALL BE REINSTALLED OR SUPPORTED AS REQUIRED IN ACCORDANCE WITH NEW WORK SPECIFICATION. ALL WORK SHALL BE COMPLETED TO THE SATISFACTION OF THE ENGINEER AND AT NO ADDITIONAL CONTRACT COST. I. PATCH TO MATCH EXISTING ALL NEW AND EXISTING OPENINGS AND WALLS, CEILINGS, ROOF, AND FLOOR SURFACES DAMAGED OR CREATED BY DEMOLITION WORK. PATCHING WHERE POSSIBLE SHALL MATCH EXISTING ADJACENT SURFACES AS TO THICKNESS, TEXTURES MATERIALS, AND COLOR. ALL PATCHING SHALL BE PERFORMED TO THE

SATISFACTION OF THE ARCHITECT AND AT NO ADDITIONAL CONTRACT

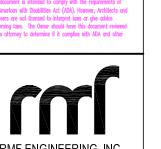
J. IN GENERAL ALL EQUIPMENT AND MATERIALS SHOWN "LIGHT" IS EXISTING TO REMAIN. ALL EQUIPMENT AND MATERIALS SHOWN "HEAVY AND HATCHED" IS EXISTING AND SHALL BE DEMOLISHED.

DRAWING NOTE:

COST.

- 1) REMOVE EXISTING EXHAUST FAN ALONG WITH ASSOCIATED DUCTWORK, PIPING, AND CONTROLS AS INDICATED.
- 2) REMOVE EXISTING THERMOSTAT.
- (3) EXISTING DUCTWORK IN AREA A AND THE TEMPORARY TSA CHECKPOINT IS TO REMAIN WHILE CONSTRUCTION IS TAKING PLACE IN AREA B.
 ONCE AREA B CONSTRUCTION IS FINISHED, THE DUCTWORK WILL BE
 REMOVED AS SHOWN. REFER TO ARCHITECTURAL DRAWINGS FOR A
 DETAILED PROJECT PHASING PLAN.

FIRE RATED WALL LEGEND


<u>GRAPHIC SCALE</u>

SCALE: 1/8"=1'-0" UNIT OF MEASURE: FEET

1 HOUR FIRE PARTITION

1 HOUR FIRE BARRIER

 \Box en. 0 erminal **—**

 \sim

ar

 \triangleleft \simeq

ayett

DATE: <u>07-19-19</u> PROJECT NO.: ____1808

REVISIONS

- A. NOTIFY THE OWNER, IN WRITING, AT LEAST SEVEN (7) DAYS IN ADVANCE OF ALL REQUIRED SHUTDOWNS OF ELECTRICAL SERVICE, OR OTHER UTILITIES. UPON WRITTEN RECEIPT OF APPROVAL FROM OWNER, SHUTDOWNS SHALL BE PERFORMED DURING HOURS AS DIRECTED BY THE OWNER AND SHALL BE ACCOMPLISHED AT NO ADDITIONAL CONTRACT COST. AT THE END OF EACH SHUT DOWN ALL SERVICES SHALL BE RESTORED.
- B. WHEN WORKING IN AND AROUND THE EXISTING BUILDING, EXTREME CARE SHALL BE EXERCISED WITH REGARD TO PROTECTION OF THE EXISTING STRUCTURE AND MECHANICAL AND ELECTRICAL SERVICES WHICH WILL REMAIN. REPAIR, REPLACE, OR RESTORE TO THE SATISFACTION OF THE OWNER ALL EXISTING WORK DAMAGED IN THE PERFORMANCE OF DEMOLITION AND/OR NEW WORK.
- C. ALL EXISTING WIRING, EQUIPMENT, CONDUITS, AND MATERIALS NOT REQUIRED FOR RE-USE OR RE-INSTALLATION (SHOWN OR OTHERWISE) SHALL BE REMOVED. ALL EXISTING MATERIALS AND EQUIPMENT WHICH ARE REMOVED AND ARE DESIRED BY THE OWNER, OR ARE INDICATED TO REMAIN THE PROPERTY OF THE OWNER, SHALL BE DELIVERED TO HIM ON THE PREMISES BY THE CONTRACTOR WHERE DIRECTED BY THE ENGINEER. ALL OTHER MATERIALS AND EQUIPMENT WHICH ARE REMOVED SHALL BECOME THE PROPERTY OF THE CONTRACTOR AND SHALL BE REMOVED BY THE CONTRACTOR FROM THE PREMISES.
- D. EXISTING CONDITIONS, I.E., PRESENCE AND LOCATION OF PANEL BOARDS, LIGHTING FIXTURES, RECEPTACLES, EQUIPMENT, AND MATERIALS, INDICATED ARE BASED ON INFORMATION OBTAINED FROM AVAILABLE RECORD DRAWINGS AND FIELD SURVEYS AND ARE NOT WARRANTED TO BE COMPLETE OR CORRECT. CONTRACTOR SHALL FIELD VERIFY EXACT LOCATION OF ALL CONDUITS, EQUIPMENT, AND MATERIALS IN THE FIELD PRIOR TO STARTING ALL WORK.
- E. EXISTING EQUIPMENT SIZES NOTED ARE FOR THE CONVENIENCE OF THE CONTRACTOR ONLY AND ARE NOT WARRANTED TO BE CORRECT. CONTRACTOR SHALL VERIFY ALL SIZES IN THE FIELD IF THEY EFFECT HIS
- F. WHEN EXISTING MECHANICAL AND ELECTRICAL WORK IS REMOVED, ALL CONDUITS, WIRING AND MATERIALS SHALL BE REMOVED TO A POINT BELOW THE FINISHED FLOORS OR BEHIND FINISHED WALLS AND CAPPED. SUCH POINTS SHALL BE FAR ENOUGH BEHIND FINISHED SURFACES TO ALLOW FOR THE INSTALLATION OF THE NORMAL THICKNESS OF FINISHED MATERIAL.
- G. EXISTING WIRING & CONDUIT NO LONGER REQUIRED TO REMAIN IN SERVICE (SHOWN OR OTHERWISE) SHALL BE DISCONNECTED AND REMOVED BACK TO PANEL BOARD UNLESS OTHERWISE INDICATED OR NOTED ON THE PLANS. REMOVE EXISTING PIPE HANGERS, SUPPORTS, CONDUIT, ETC.. UNDERGROUND CONDUIT TO BE REMOVED SHALL BE LIMITED TO PIPING IN THE AREAS OCCUPIED BY THE NEW CONSTRUCTION AND FIVE FEET (5') BEYOND THE NEW CONSTRUCTION. EXISTING CONDUIT INDICATED OR REQUIRED TO REMAIN IN SERVICE OR IN PLACE SHALL BE CAPPED, PLUGGED, OTHERWISE SEALED. NO EXISTING CONDUIT SHALL BE LEFT OPEN END.
- H. EXISTING MECHANICAL AND ELECTRICAL EQUIPMENT, CONDUIT, WIRING, DEVICES, AND MATERIALS AFFECTED BY DEMOLITION OR NEW WORK INSTALLATION AND REQUIRED TO REMAIN IN SERVICE SHALL BE REINSTALLED OR SUPPORTED AS REQUIRED IN ACCORDANCE WITH NEW WORK SPECIFICATION. ALL WORK SHALL BE COMPLETED TO THE SATISFACTION OF THE ENGINEER AND AT NO ADDITIONAL CONTRACT COST.
- PATCH TO MATCH EXISTING ALL NEW AND EXISTING OPENINGS AND WALLS, CEILINGS, ROOF, AND FLOOR SURFACES DAMAGED OR CREATED BY DEMOLITION WORK. PATCHING WHERE POSSIBLE SHALL MATCH EXISTING ADJACENT SURFACES AS TO THICKNESS, TEXTURES MATERIALS, AND COLOR. ALL PATCHING SHALL BE PERFORMED TO THE SATISFACTION OF THE ARCHITECT AND AT NO ADDITIONAL CONTRACT
- J. IN GENERAL ALL EQUIPMENT AND MATERIALS SHOWN "LIGHT" IS EXISTING TO REMAIN. ALL EQUIPMENT AND MATERIALS SHOWN "HEAVY AND HATCHED" IS EXISTING AND SHALL BE DEMOLISHED.

DRAWING NOTE:

- (1) FOR PHASE ONE CONSTRUCTION, DISCONNECT AND CAP SUPPLY DUCTWORK IN APPROXIMATELY THIS LOCATION SO THAT ALL DUCTWORK IN AREA—B IS REMOVED BACK TO THE MAIN TAP.
- 2 REMOVE EXISTING THERMOSTAT
- FOR PHASE ONE CONSTRUCTION, REMOVE SUPPLY GRILLE AND PATCH DUCTWORK.
- (4) FOR PHASE ONE CONSTRUCTION, SUPPLY DUCT SHOULD BE REMOVED TO THIS POINT. SUPPLY DUCT RUNNING PLAN WEST INTO AREA-A WILL REMAIN TO SERVE THE TEMPORARY TSA CHECKPOINT UNTIL CONSTRUCTION IN AREA-B IS COMPLETE. AT THAT POINT, THE REMAINING DUCTWORK WILL BE REMOVED AS SHOWN. REFER TO ARCHITECTURAL DRAWINGS FOR A DETAILED PHASING PLAN.
- 5 SUPPLY/RETURN DUCT IS TO REMAIN UNTIL CONSTRUCTION IN AREA-B IS COMPLETE.

FIRE RATED WALL LEGEND

<u>GRAPHIC SCALE</u>

SCALE: 1/8"=1'-0" UNIT OF MEASURE: FEET

___ 1 HOUR FIRE PARTITION

1 HOUR FIRE BARRIER

Architecture

deproduction or publication of this document is

RMF ENGINEERING, INC. 8720 Red Oak Blvd, Suite 370 Charlotte, NC 28217 P 704 909 6612 NC license No: C-1126 RMF Project No: 2153223 F0

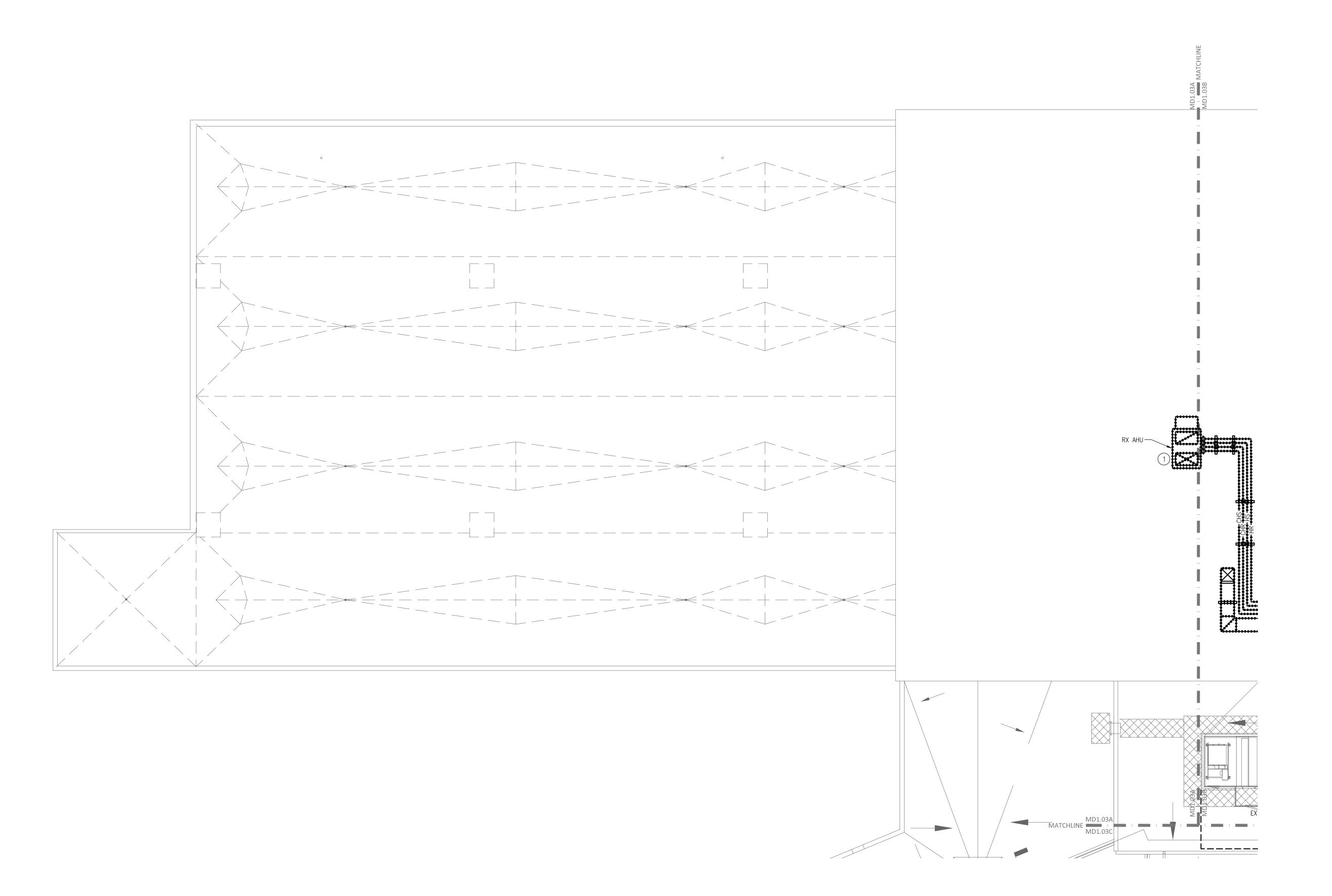
0 lmpr **—**

 \sim

 \Box

ayett

DATE: <u>07-19-19</u> PROJECT NO.: <u>1808</u> REVISIONS



Architecture

deproduction or publication of this document is ot permitted without the expressed consent of

RMF ENGINEERING, INC. 8720 Red Oak Blvd, Suite 370 Charlotte, NC 28217 P: 704 909 6612 NC license No: C-1126

DATE: <u>07-19-19</u> PROJECT NO.: ____1808

- A. NOTIFY THE OWNER, IN WRITING, AT LEAST SEVEN (7) DAYS IN ADVANCE OF ALL REQUIRED SHUTDOWNS OF ELECTRICAL SERVICE, OR OTHER UTILITIES. UPON WRITTEN RECEIPT OF APPROVAL FROM OWNER, SHUTDOWNS SHALL BE PERFORMED DURING HOURS AS DIRECTED BY THE OWNER AND SHALL BE ACCOMPLISHED AT NO ADDITIONAL CONTRACT COST. AT THE END OF EACH SHUT DOWN ALL SERVICES SHALL BE
- B. WHEN WORKING IN AND AROUND THE EXISTING BUILDING, EXTREME CARE SHALL BE EXERCISED WITH REGARD TO PROTECTION OF THE EXISTING STRUCTURE AND MECHANICAL AND ELECTRICAL SERVICES WHICH WILL REMAIN. REPAIR, REPLACE, OR RESTORE TO THE SATISFACTION OF THE OWNER ALL EXISTING WORK DAMAGED IN THE PERFORMANCE OF DEMOLITION AND/OR NEW WORK.
- C. ALL EXISTING WIRING, EQUIPMENT, CONDUITS, AND MATERIALS NOT REQUIRED FOR RE-USE OR RE-INSTALLATION (SHOWN OR OTHERWISE) SHALL BE REMOVED. ALL EXISTING MATERIALS AND EQUIPMENT WHICH ARE REMOVED AND ARE DESIRED BY THE OWNER, OR ARE INDICATED TO REMAIN THE PROPERTY OF THE OWNER, SHALL BE DELIVERED TO HIM ON THE PREMISES BY THE CONTRACTOR WHERE DIRECTED BY THE ENGINEER. ALL OTHER MATERIALS AND EQUIPMENT WHICH ARE REMOVED SHALL BECOME THE PROPERTY OF THE CONTRACTOR AND SHALL BE REMOVED BY THE CONTRACTOR FROM THE PREMISES.
- D. EXISTING CONDITIONS, I.E., PRESENCE AND LOCATION OF PANEL BOARDS, LIGHTING FIXTURES, RECEPTACLES, EQUIPMENT, AND MATERIALS, INDICATED ARE BASED ON INFORMATION OBTAINED FROM AVAILABLE RECORD DRAWINGS AND FIELD SURVEYS AND ARE NOT WARRANTED TO BE COMPLETE OR CORRECT. CONTRACTOR SHALL FIELD VERIFY EXACT LOCATION OF ALL CONDUITS, EQUIPMENT, AND MATERIALS IN THE FIELD PRIOR TO STARTING ALL WORK.
- E. EXISTING EQUIPMENT SIZES NOTED ARE FOR THE CONVENIENCE OF THE CONTRACTOR ONLY AND ARE NOT WARRANTED TO BE CORRECT. CONTRACTOR SHALL VERIFY ALL SIZES IN THE FIELD IF THEY EFFECT HIS
- F. WHEN EXISTING MECHANICAL AND ELECTRICAL WORK IS REMOVED, ALL CONDUITS, WIRING AND MATERIALS SHALL BE REMOVED TO A POINT BELOW THE FINISHED FLOORS OR BEHIND FINISHED WALLS AND CAPPED. SUCH POINTS SHALL BE FAR ENOUGH BEHIND FINISHED SURFACES TO ALLOW FOR THE INSTALLATION OF THE NORMAL THICKNESS OF FINISHED MATERIAL.
- G. EXISTING WIRING & CONDUIT NO LONGER REQUIRED TO REMAIN IN SERVICE (SHOWN OR OTHERWISE) SHALL BE DISCONNECTED AND REMOVED BACK TO PANEL BOARD UNLESS OTHERWISE INDICATED OR NOTED ON THE PLANS. REMOVE EXISTING PIPE HANGERS, SUPPORTS, CONDUIT, ETC.. UNDERGROUND CONDUIT TO BE REMOVED SHALL BE LIMITED TO PIPING IN THE AREAS OCCUPIED BY THE NEW CONSTRUCTION AND FIVE FEET (5') BEYOND THE NEW CONSTRUCTION. EXISTING CONDUIT INDICATED OR REQUIRED TO REMAIN IN SERVICE OR IN PLACE SHALL BE CAPPED, PLUGGED, OTHERWISE SEALED. NO EXISTING CONDUIT SHALL BE LEFT OPEN END.
- H. EXISTING MECHANICAL AND ELECTRICAL EQUIPMENT, CONDUIT, WIRING, DEVICES, AND MATERIALS AFFECTED BY DEMOLITION OR NEW WORK INSTALLATION AND REQUIRED TO REMAIN IN SERVICE SHALL BE REINSTALLED OR SUPPORTED AS REQUIRED IN ACCORDANCE WITH NEW WORK SPECIFICATION. ALL WORK SHALL BE COMPLETED TO THE SATISFACTION OF THE ENGINEER AND AT NO ADDITIONAL CONTRACT COST.
- I. PATCH TO MATCH EXISTING ALL NEW AND EXISTING OPENINGS AND WALLS, CEILINGS, ROOF, AND FLOOR SURFACES DAMAGED OR CREATED BY DEMOLITION WORK. PATCHING WHERE POSSIBLE SHALL MATCH EXISTING ADJACENT SURFACES AS TO THICKNESS, TEXTURES MATERIALS, AND COLOR. ALL PATCHING SHALL BE PERFORMED TO THE SATISFACTION OF THE ARCHITECT AND AT NO ADDITIONAL CONTRACT COST.
- J. IN GENERAL ALL EQUIPMENT AND MATERIALS SHOWN "LIGHT" IS EXISTING TO REMAIN. ALL EQUIPMENT AND MATERIALS SHOWN "HEAVY AND HATCHED" IS EXISTING AND SHALL BE DEMOLISHED.

DRAWING NOTES:

1) REMOVE EXISTING AIR HANDLING UNIT ALONG WITH ASSOCIATED DUCTWORK, PIPING, AND CONTROLS AS INDICATED.

<u>GRAPHIC SCALE</u>

SCALE: 1/8"=1'-0" UNIT OF MEASURE: FEET

Architecture

production or publication of this document is

7

dr

 \Box

erminal

—

FIRE RATED WALL LEGEND 1 HOUR FIRE PARTITION --- 1 HOUR FIRE BARRIER ayett DATE: 07-19-19 PROJECT NO.: <u>1808</u> REVISIONS SHEET NUMBER

- A. NOTIFY THE OWNER, IN WRITING, AT LEAST SEVEN (7) DAYS IN ADVANCE OF ALL REQUIRED SHUTDOWNS OF ELECTRICAL SERVICE, OR OTHER UTILITIES. UPON WRITTEN RECEIPT OF APPROVAL FROM OWNER, SHUTDOWNS SHALL BE PERFORMED DURING HOURS AS DIRECTED BY THE OWNER AND SHALL BE ACCOMPLISHED AT NO ADDITIONAL CONTRACT COST. AT THE END OF EACH SHUT DOWN ALL SERVICES SHALL BE
- B. WHEN WORKING IN AND AROUND THE EXISTING BUILDING, EXTREME CARE SHALL BE EXERCISED WITH REGARD TO PROTECTION OF THE EXISTING STRUCTURE AND MECHANICAL AND ELECTRICAL SERVICES WHICH WILL REMAIN. REPAIR, REPLACE, OR RESTORE TO THE SATISFACTION OF THE OWNER ALL EXISTING WORK DAMAGED IN THE PERFORMANCE OF DEMOLITION AND/OR NEW WORK.

Architecture

production or publication of this document is t permitted without the expressed consent of

8720 Red Oak Blvd, Suite 370

Charlotte, NC 28217

P: 704 909 6612 NC license No: C-1126

RMF Project No: 2153223 F0

- C. ALL EXISTING WIRING, EQUIPMENT, CONDUITS, AND MATERIALS NOT REQUIRED FOR RE-USE OR RE-INSTALLATION (SHOWN OR OTHERWISE) SHALL BE REMOVED. ALL EXISTING MATERIALS AND EQUIPMENT WHICH ARE REMOVED AND ARE DESIRED BY THE OWNER, OR ARE INDICATED TO REMAIN THE PROPERTY OF THE OWNER, SHALL BE DELIVERED TO HIM ON THE PREMISES BY THE CONTRACTOR WHERE DIRECTED BY THE ENGINEER. ALL OTHER MATERIALS AND EQUIPMENT WHICH ARE REMOVED SHALL BECOME THE PROPERTY OF THE CONTRACTOR AND SHALL BE REMOVED BY THE CONTRACTOR FROM THE PREMISES.
- D. EXISTING CONDITIONS, I.E., PRESENCE AND LOCATION OF PANEL BOARDS, LIGHTING FIXTURES, RECEPTACLES, EQUIPMENT, AND MATERIALS, INDICATED ARE BASED ON INFORMATION OBTAINED FROM AVAILABLE RECORD DRAWINGS AND FIELD SURVEYS AND ARE NOT WARRANTED TO BE COMPLETE OR CORRECT. CONTRACTOR SHALL FIELD VERIFY EXACT LOCATION OF ALL CONDUITS, EQUIPMENT, AND MATERIALS IN THE FIELD PRIOR TO STARTING ALL WORK.
- E. EXISTING EQUIPMENT SIZES NOTED ARE FOR THE CONVENIENCE OF THE CONTRACTOR ONLY AND ARE NOT WARRANTED TO BE CORRECT. CONTRACTOR SHALL VERIFY ALL SIZES IN THE FIELD IF THEY EFFECT HIS
- F. WHEN EXISTING MECHANICAL AND ELECTRICAL WORK IS REMOVED, ALL CONDUITS, WIRING AND MATERIALS SHALL BE REMOVED TO A POINT BELOW THE FINISHED FLOORS OR BEHIND FINISHED WALLS AND CAPPED. SUCH POINTS SHALL BE FAR ENOUGH BEHIND FINISHED SURFACES TO ALLOW FOR THE INSTALLATION OF THE NORMAL THICKNESS OF FINISHED MATERIAL.
- G. EXISTING WIRING & CONDUIT NO LONGER REQUIRED TO REMAIN IN SERVICE (SHOWN OR OTHERWISE) SHALL BE DISCONNECTED AND REMOVED BACK TO PANEL BOARD UNLESS OTHERWISE INDICATED OR NOTED ON THE PLANS. REMOVE EXISTING PIPE HANGERS, SUPPORTS, CONDUIT, ETC.. UNDERGROUND CONDUIT TO BE REMOVED SHALL BE LIMITED TO PIPING IN THE AREAS OCCUPIED BY THE NEW CONSTRUCTION AND FIVE FEET (5') BEYOND THE NEW CONSTRUCTION. EXISTING CONDUIT INDICATED OR RÉQUIRED TO REMAIN IN SERVICE OR IN PLACE SHALL BE CAPPED, PLUGGED, OTHERWISE SEALED. NO EXISTING CONDUIT SHALL BE LEFT OPEN END.
- H. EXISTING MECHANICAL AND ELECTRICAL EQUIPMENT, CONDUIT, WIRING, DEVICES, AND MATERIALS AFFECTED BY DEMOLITION OR NEW WORK INSTALLATION AND REQUIRED TO REMAIN IN SERVICE SHALL BE REINSTALLED OR SUPPORTED AS REQUIRED IN ACCORDANCE WITH NEW WORK SPECIFICATION. ALL WORK SHALL BE COMPLETED TO THE SATISFACTION OF THE ENGINEER AND AT NO ADDITIONAL CONTRACT COST.
- I. PATCH TO MATCH EXISTING ALL NEW AND EXISTING OPENINGS AND WALLS, CEILINGS, ROOF, AND FLOOR SURFACES DAMAGED OR CREATED BY DEMOLITION WORK. PATCHING WHERE POSSIBLE SHALL MATCH EXISTING ADJACENT SURFACES AS TO THICKNESS, TEXTURES MATERIALS, AND COLOR. ALL PATCHING SHALL BE PERFORMED TO THE SATISFACTION OF THE ARCHITECT AND AT NO ADDITIONAL CONTRACT
- TO REMAIN. ALL EQUIPMENT AND MATERIALS SHOWN "HEAVY AND HATCHED" IS EXISTING AND SHALL BE DEMOLISHED.

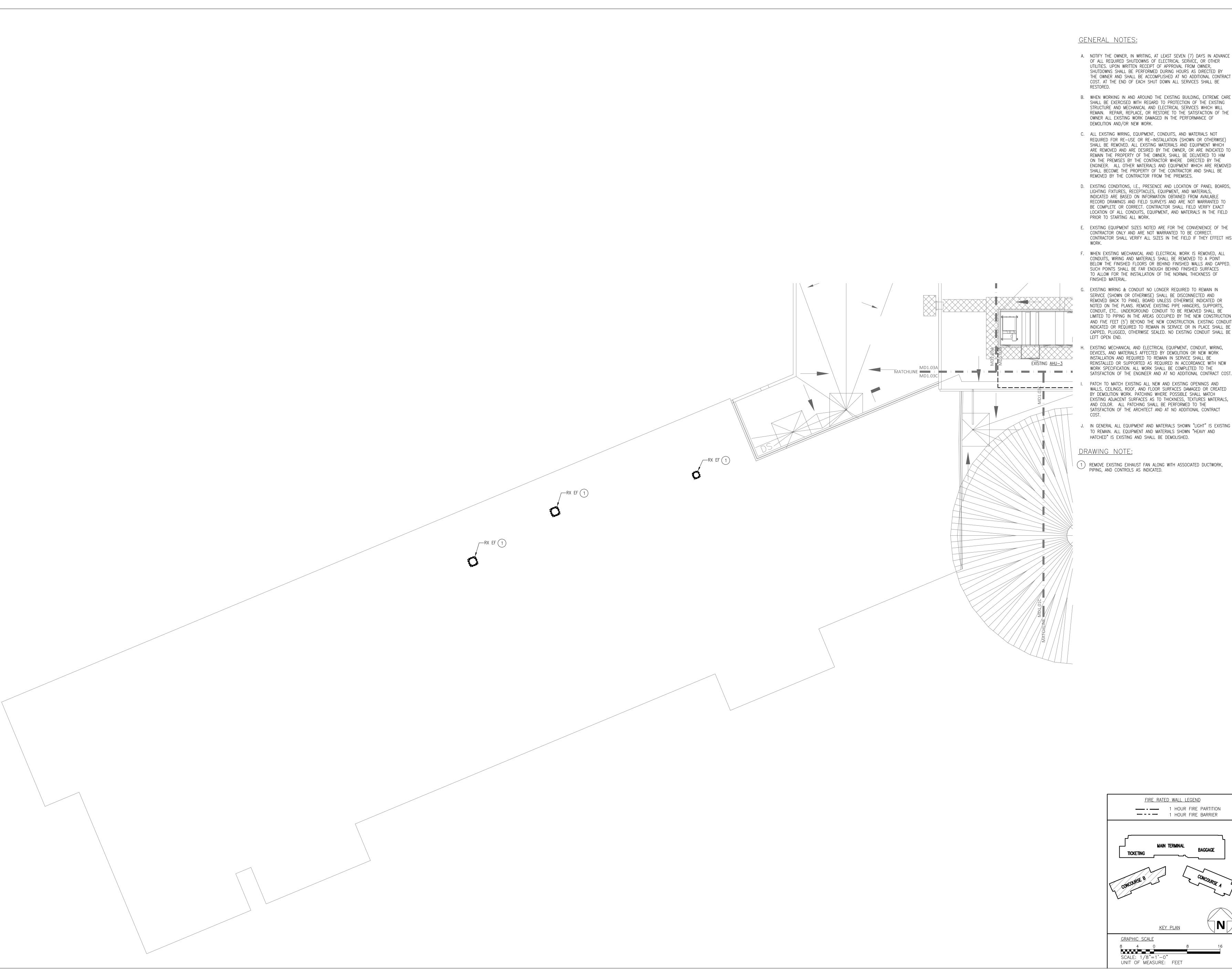
1 REMOVE EXISTING AIR HANDLING UNIT ALONG WITH ASSOCIATED DUCTWORK, PIPING, AND CONTROLS AS INDICATED.

FIRE RATED WALL LEGEND

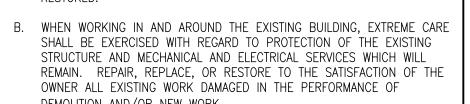
<u>GRAPHIC SCALE</u>

SCALE: 1/8"=1'-0" UNIT OF MEASURE: FEET

1 HOUR FIRE PARTITION — - - → 1 HOUR FIRE BARRIER


2 REMOVE EXISTING EXHAUST FAN ALONG WITH ASSOCIATED DUCTWORK, PIPING, AND CONTROLS AS INDICATED.

dr **—**


 \sim

ayett PROJECT NO.: <u>1808</u>

REVISIONS

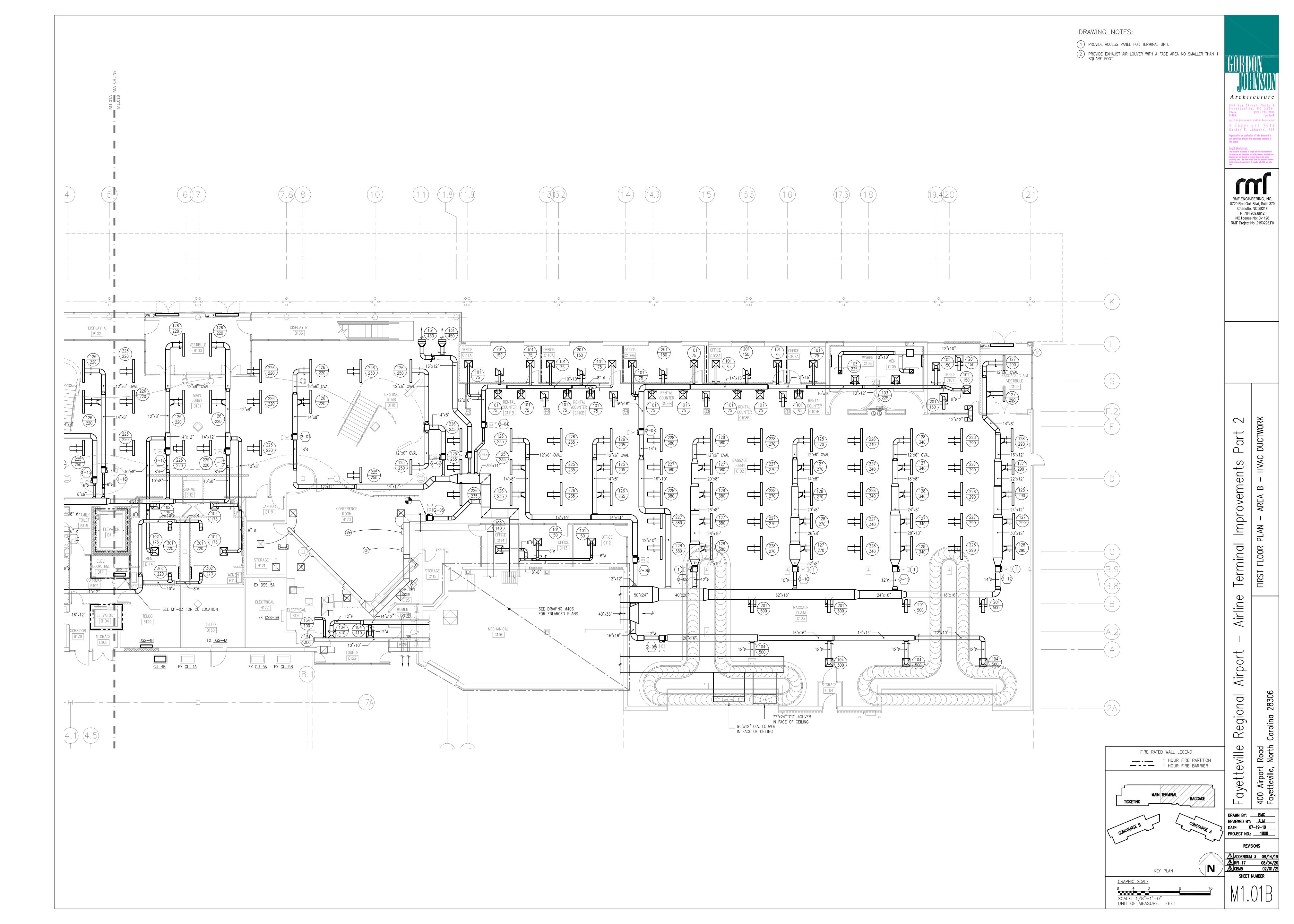
A. NOTIFY THE OWNER, IN WRITING, AT LEAST SEVEN (7) DAYS IN ADVANCE OF ALL REQUIRED SHUTDOWNS OF ELECTRICAL SERVICE, OR OTHER UTILITIES. UPON WRITTEN RECEIPT OF APPROVAL FROM OWNER, SHUTDOWNS SHALL BE PERFORMED DURING HOURS AS DIRECTED BY THE OWNER AND SHALL BE ACCOMPLISHED AT NO ADDITIONAL CONTRACT COST. AT THE END OF EACH SHUT DOWN ALL SERVICES SHALL BE

- C. ALL EXISTING WIRING, EQUIPMENT, CONDUITS, AND MATERIALS NOT REQUIRED FOR RE-USE OR RE-INSTALLATION (SHOWN OR OTHERWISE) SHALL BE REMOVED. ALL EXISTING MATERIALS AND EQUIPMENT WHICH ARE REMOVED AND ARE DESIRED BY THE OWNER, OR ARE INDICATED TO REMAIN THE PROPERTY OF THE OWNER, SHALL BE DELIVERED TO HIM ON THE PREMISES BY THE CONTRACTOR WHERE DIRECTED BY THE ENGINEER. ALL OTHER MATERIALS AND EQUIPMENT WHICH ARE REMOVED SHALL BECOME THE PROPERTY OF THE CONTRACTOR AND SHALL BE
- D. EXISTING CONDITIONS, I.E., PRESENCE AND LOCATION OF PANEL BOARDS, LIGHTING FIXTURES, RECEPTACLES, EQUIPMENT, AND MATERIALS, INDICATED ARE BASED ON INFORMATION OBTAINED FROM AVAILABLE RECORD DRAWINGS AND FIELD SURVEYS AND ARE NOT WARRANTED TO BE COMPLETE OR CORRECT. CONTRACTOR SHALL FIELD VERIFY EXACT LOCATION OF ALL CONDUITS, EQUIPMENT, AND MATERIALS IN THE FIELD
- E. EXISTING EQUIPMENT SIZES NOTED ARE FOR THE CONVENIENCE OF THE CONTRACTOR ONLY AND ARE NOT WARRANTED TO BE CORRECT. CONTRACTOR SHALL VERIFY ALL SIZES IN THE FIELD IF THEY EFFECT HIS
- F. WHEN EXISTING MECHANICAL AND ELECTRICAL WORK IS REMOVED, ALL CONDUITS, WIRING AND MATERIALS SHALL BE REMOVED TO A POINT BELOW THE FINISHED FLOORS OR BEHIND FINISHED WALLS AND CAPPED. SUCH POINTS SHALL BE FAR ENOUGH BEHIND FINISHED SURFACES TO ALLOW FOR THE INSTALLATION OF THE NORMAL THICKNESS OF
- SERVICE (SHOWN OR OTHERWISE) SHALL BE DISCONNECTED AND REMOVED BACK TO PANEL BOARD UNLESS OTHERWISE INDICATED OR NOTED ON THE PLANS. REMOVE EXISTING PIPE HANGERS, SUPPORTS, CONDUIT, ETC.. UNDERGROUND CONDUIT TO BE REMOVED SHALL BE LIMITED TO PIPING IN THE AREAS OCCUPIED BY THE NEW CONSTRUCTION AND FIVE FEET (5') BEYOND THE NEW CONSTRUCTION. EXISTING CONDUIT INDICATED OR REQUIRED TO REMAIN IN SERVICE OR IN PLACE SHALL BE CAPPED, PLUGGED, OTHERWISE SEALED. NO EXISTING CONDUIT SHALL BE
- DEVICES, AND MATERIALS AFFECTED BY DEMOLITION OR NEW WORK INSTALLATION AND REQUIRED TO REMAIN IN SERVICE SHALL BE REINSTALLED OR SUPPORTED AS REQUIRED IN ACCORDANCE WITH NEW WORK SPECIFICATION. ALL WORK SHALL BE COMPLETED TO THE SATISFACTION OF THE ENGINEER AND AT NO ADDITIONAL CONTRACT COST.
- WALLS, CEILINGS, ROOF, AND FLOOR SURFACES DAMAGED OR CREATED BY DEMOLITION WORK. PATCHING WHERE POSSIBLE SHALL MATCH EXISTING ADJACENT SURFACES AS TO THICKNESS, TEXTURES MATERIALS, AND COLOR. ALL PATCHING SHALL BE PERFORMED TO THE SATISFACTION OF THE ARCHITECT AND AT NO ADDITIONAL CONTRACT
- TO REMAIN. ALL EQUIPMENT AND MATERIALS SHOWN "HEAVY AND HATCHED" IS EXISTING AND SHALL BE DEMOLISHED.

Architecture

ordon É. Johnson, Al*l* deproduction or publication of this document is ot permitted without the expressed consent of

RMF ENGINEERING, INC. 8720 Red Oak Blvd, Suite 370 Charlotte, NC 28217 P: 704 909 6612 NC license No: C-1126 RMF Project No: 2153223.F0


 \sim ar \Box Improvements **├**

DATE: <u>07–19–19</u> PROJECT NO.: <u>1808</u> REVISIONS

Architecture © Copyright 2019 Gordon E. Johnson, AIA Reproduction or publication of this document is not permitted without the expressed consent of the above.

DRAWN BY: BMC
REVIEWED BY: ALM
DATE: 07-19-19
PROJECT NO.: 1808

DRAWING NOTES:

- CONNECT NEW CEILING DIFFUSER TO EXISTING DUCTWORK.
 COORDINATE LOCATION WITH NEW CEILING GRID TO HAVE THE NEW
 DIFFUSER INSTALLED IN APPROXIMATELY THE SAME LOCATION AS THE
 DEMOLISHED DIFFUSER. EXTEND DUCTWORK AS NEEDED. FLEXIBLE DUCTWORK SHOULD NOT EXCEED 5'-0". BALANCE NEW DIFFUSERS TO THE CFM SHOWN.
- PROVIDE INDEECO TYPE QUA SLIP-IN DUCT HEATER. HEATER SHALL
 BE RATED FOR 3.5KW AND BE 208V/1ø/60Hz. SEE SPECIFICATIONS
 FOR EQUIVALENT MANUFACTURES. CUT AND PATCH DUCTWORK AS
 NECESSARY FOR INSTALLATION. REPLACE DUCT INSULATION WITH LIKE KIND TO EXISTING INSULATION.
- 3 PROVIDE 12" x 12" OA PLUNEUM WITH 1", MERV 11, 12" X 12" CARBON FILTER IN THE FACE OF THE O.A. GRILLE. PROVIDE ACCESS IN DUCTWORK TO FILTER.
- TERMINATE DUCTWORK WITH A 45 DEGREE ELBOW DOWN OUTSIDE EXTERIOR WALL. PROVIDE BIRD SCREEN AT OPENING.

Reproduction or publication of this document is not permitted without the expressed consent of the above.

RMF ENGINEERING, INC. 8720 Red Oak Blvd, Suite 370 Charlotte, NC 28217

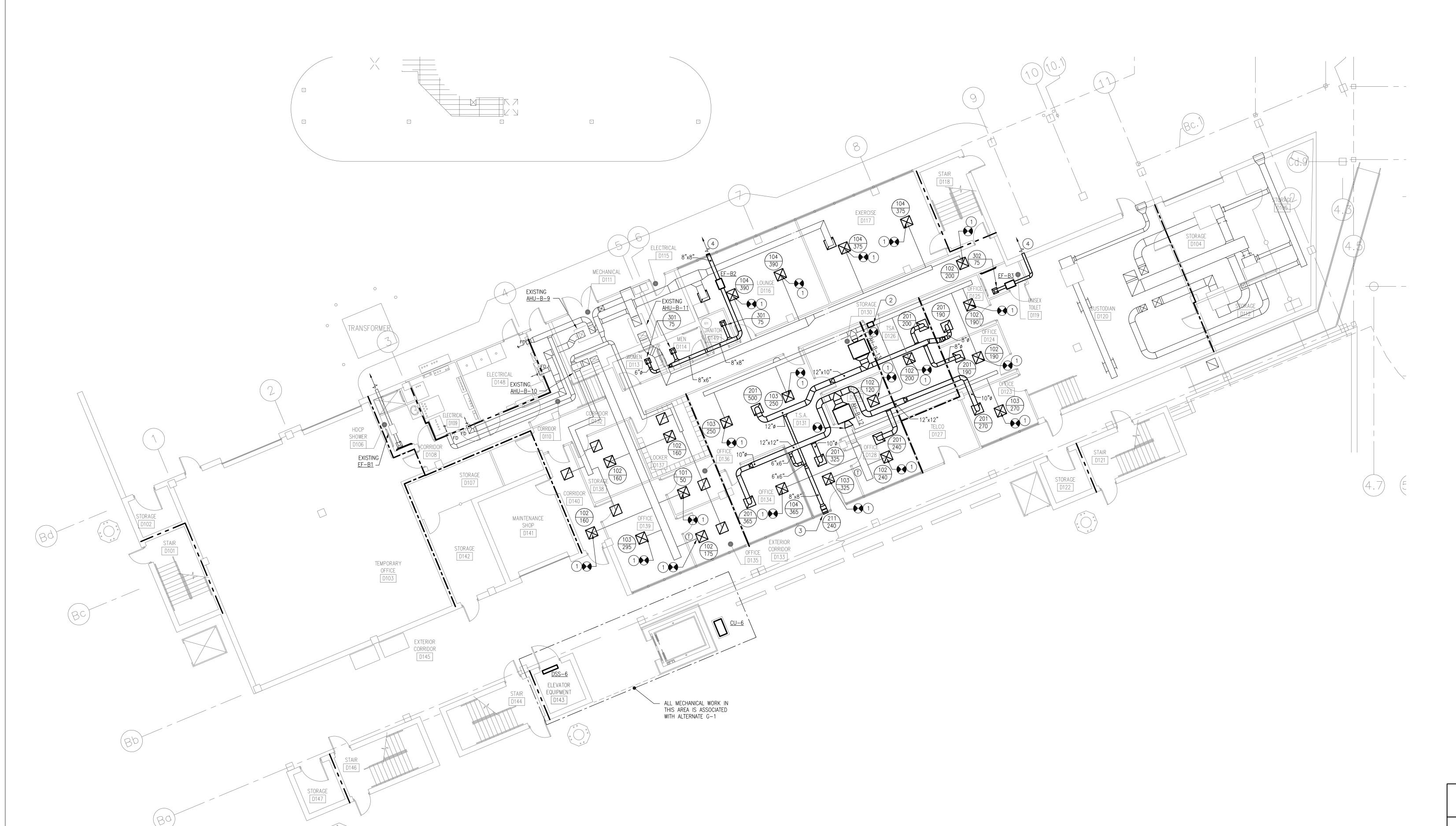
P: 704.909.6612 NC license No: C-1126 RMF Project No: 2153223.F0

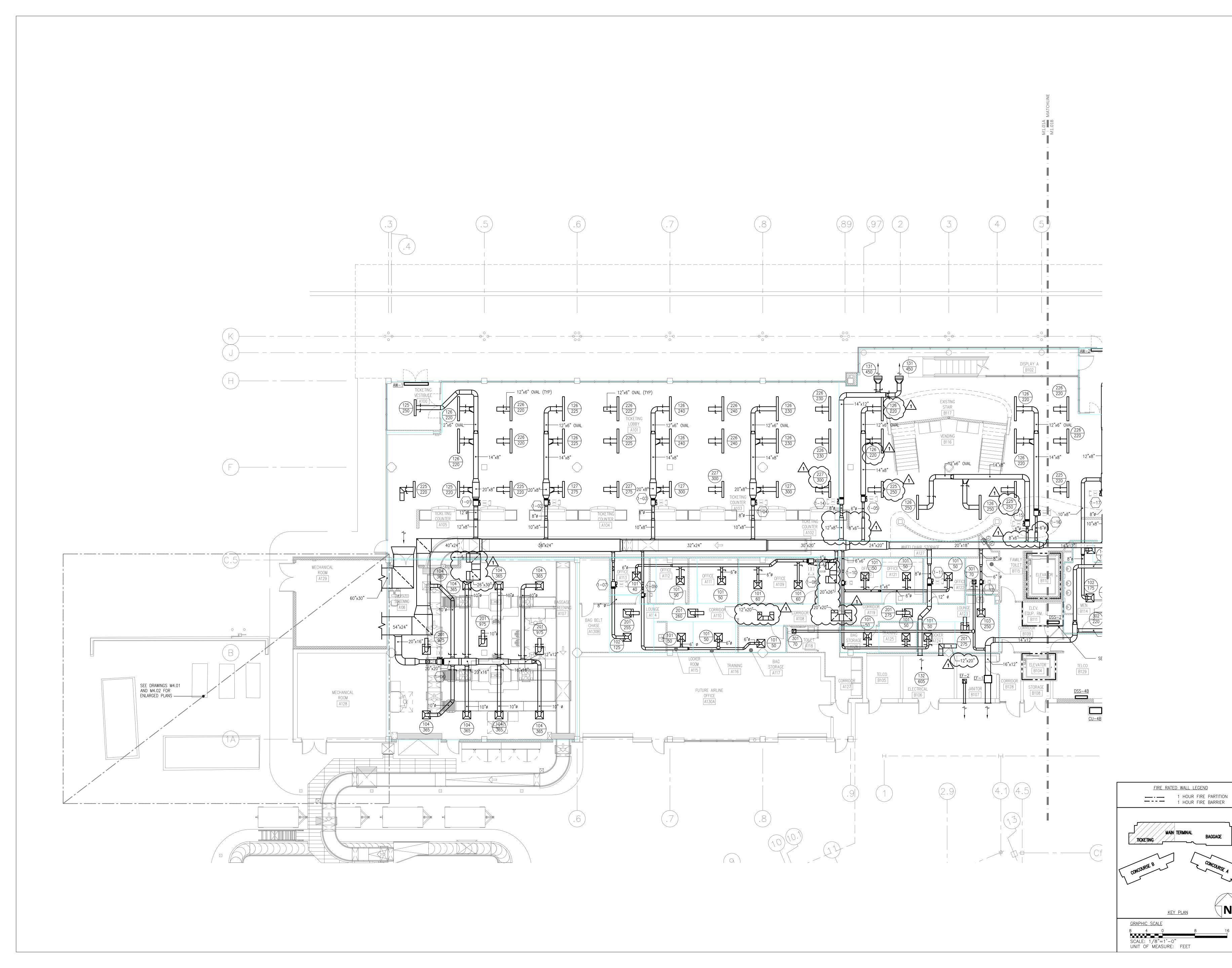
 \sim Improvements Terminal

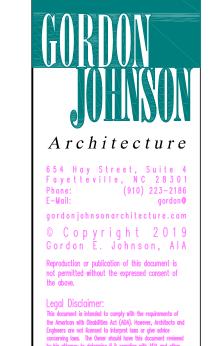
Airpor Regional eville

Fayette

REVIEWED BY: ALM


DATE: 07-19-19

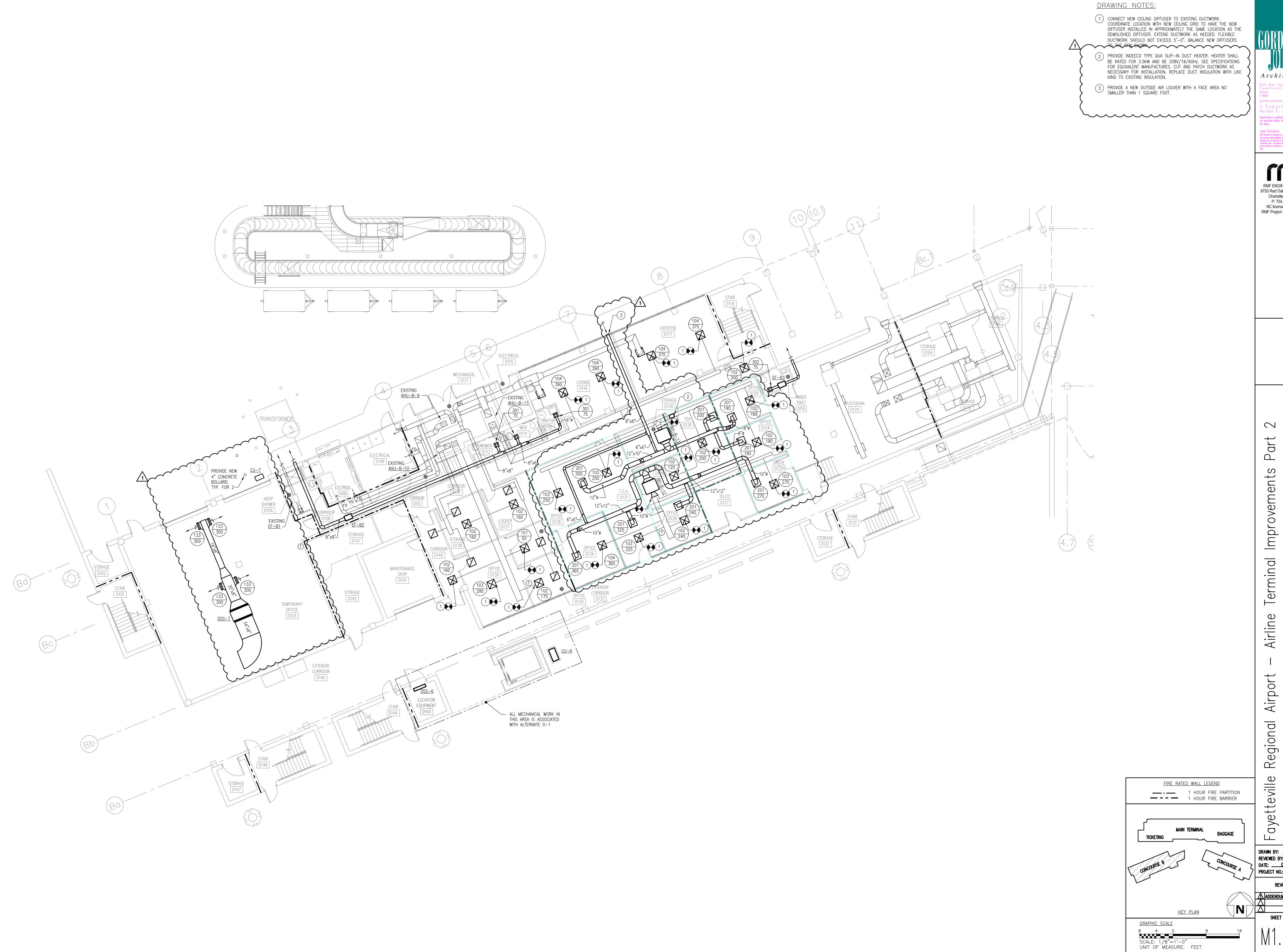

PROJECT NO.: 1808


GRAPHIC SCALE SCALE: 1/8"=1'-0" UNIT OF MEASURE: FEET

FIRE RATED WALL LEGEND

1 HOUR FIRE PARTITION
1 HOUR FIRE BARRIER

 \sim Terminal


Fayette

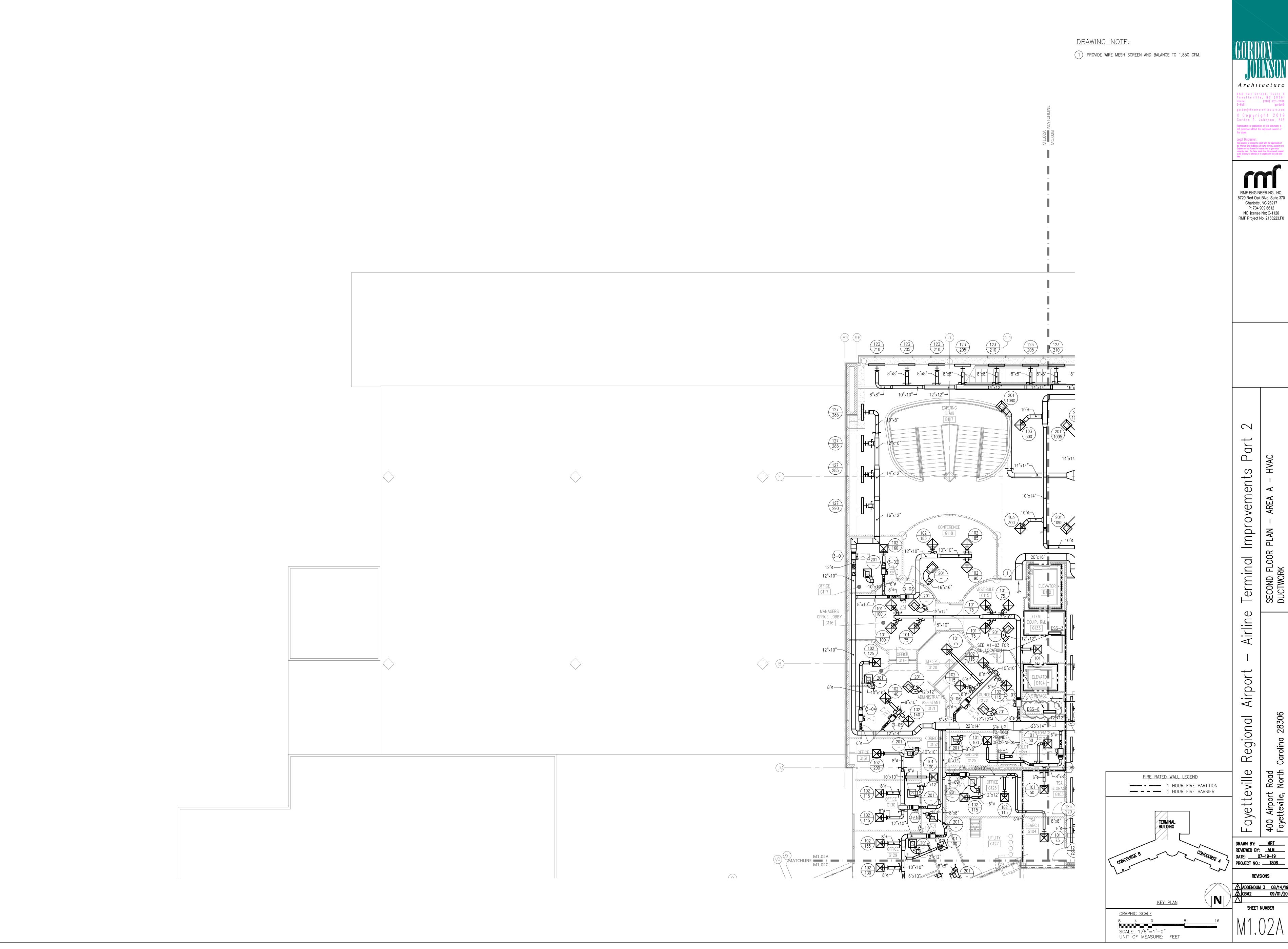
REVIEWED BY: ALM

DATE: 07-19-19

PROJECT NO.: 1808 REVISIONS

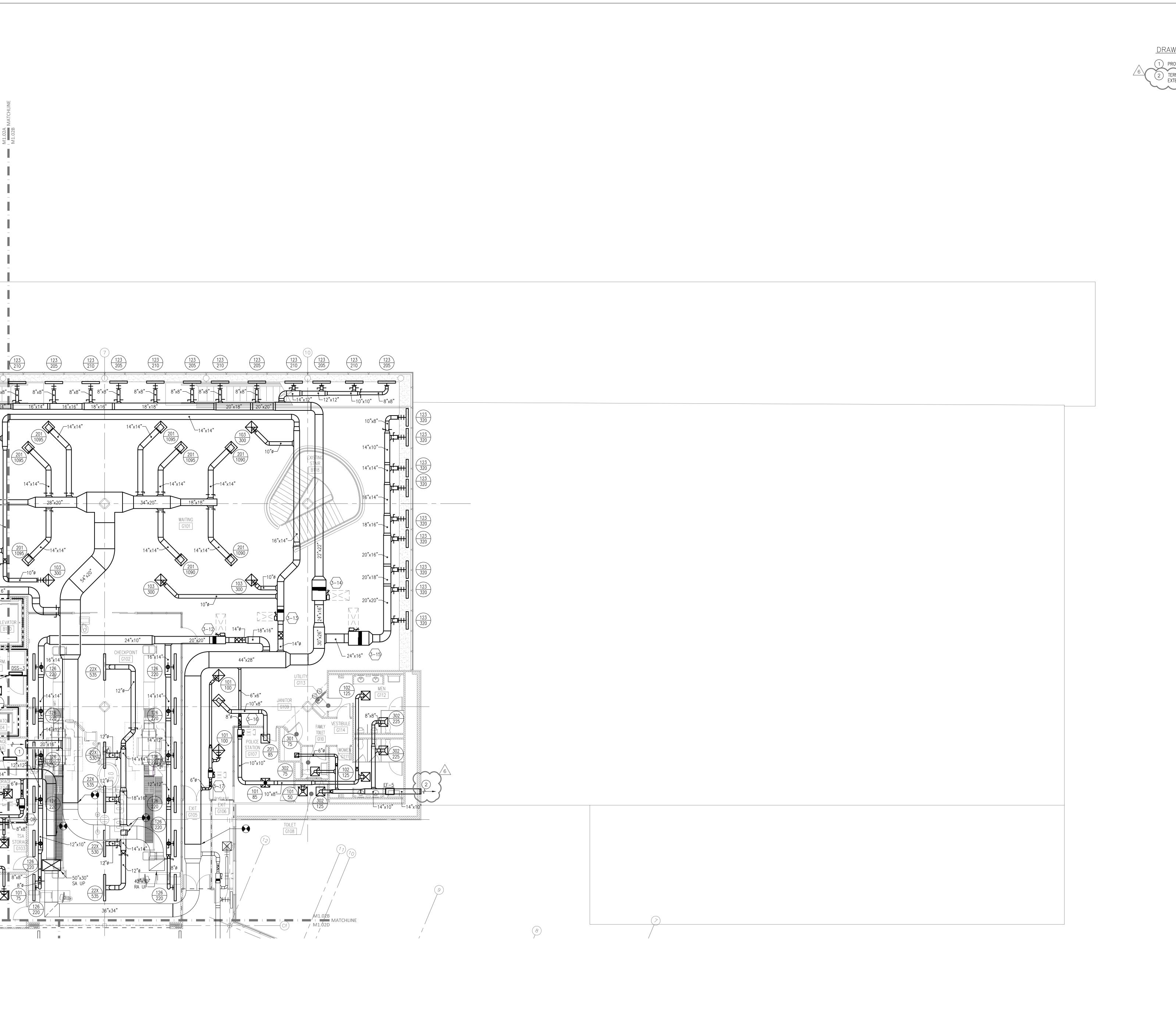
Architecture D Copyright 2019 Gordon E. Johnson, AIA

Reproduction or publication of this document is not permitted without the expressed consent of the above.

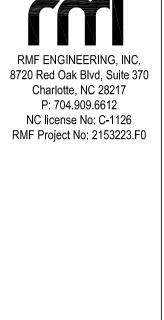

RMF ENGINEERING, INC. 8720 Red Oak Blvd, Suite 370 Charlotte, NC 28217 P: 704.909.6612 NC license No: C-1126 RMF Project No: 2153223.F0

REVIEWED BY: ALM

DATE: 07-19-19


PROJECT NO.: 1808

REVISIONS


DRAWING NOTE:

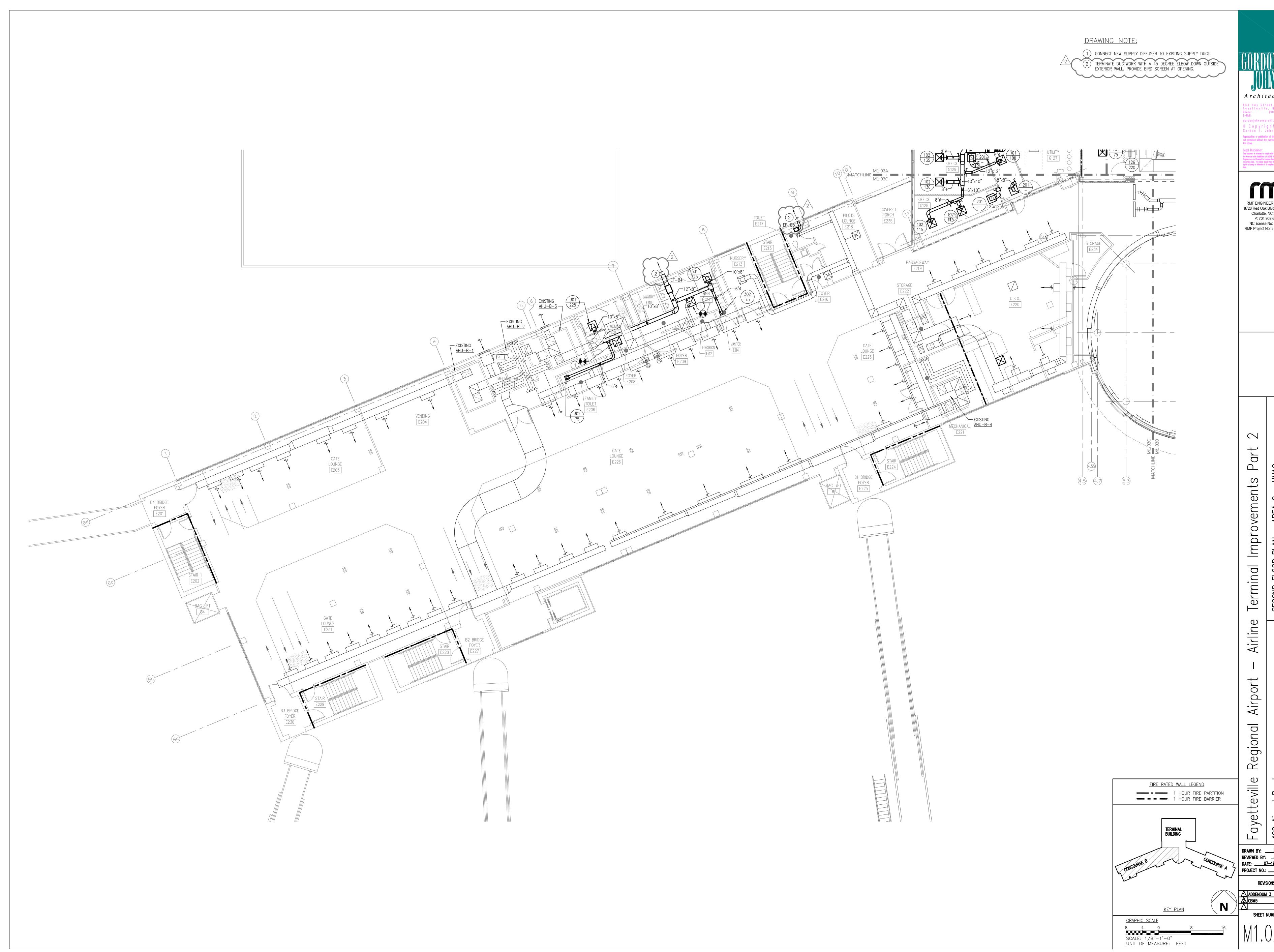
1 PROVIDE WIRE MESH SCREEN AND BALANCE TO 1,850 CFM.
2 TERMINATE DUCTWORK WITH A 45 DEGREE ELBOW DOWN OUTSIDE EXTERIOR WALL. PROVIDE BIRD SCREEN AT OPENING.

Architecture

© Copyright 2019 Gordon E. Johnson, AIA Reproduction or publication of this document is not permitted without the expressed consent of the above.

Improvements erminal Airpor eville Fayette

 \sim

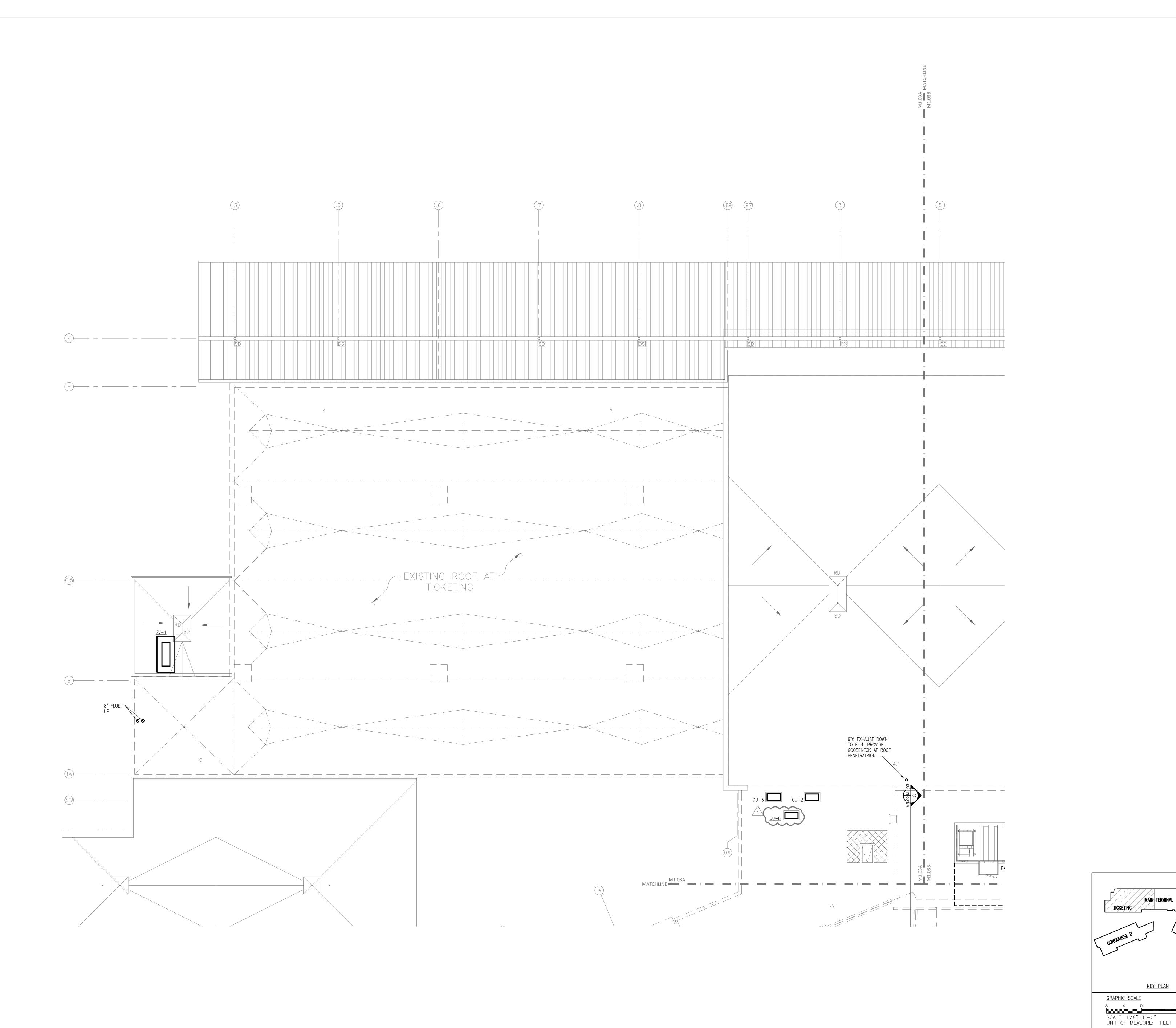

FIRE RATED WALL LEGEND 1 HOUR FIRE PARTITION
1 HOUR FIRE BARRIER

GRAPHIC SCALE

8 4 0

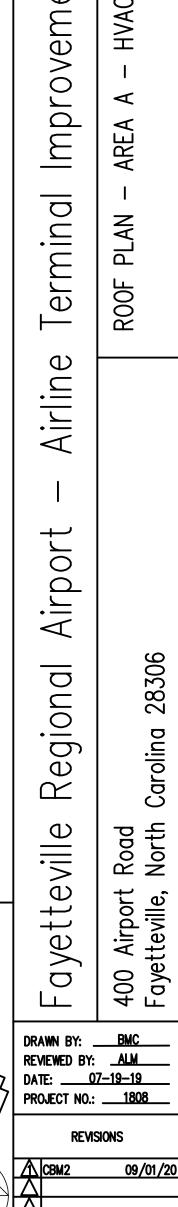
SCALE: 1/8"=1'-0"

UNIT OF MEASURE: FEET

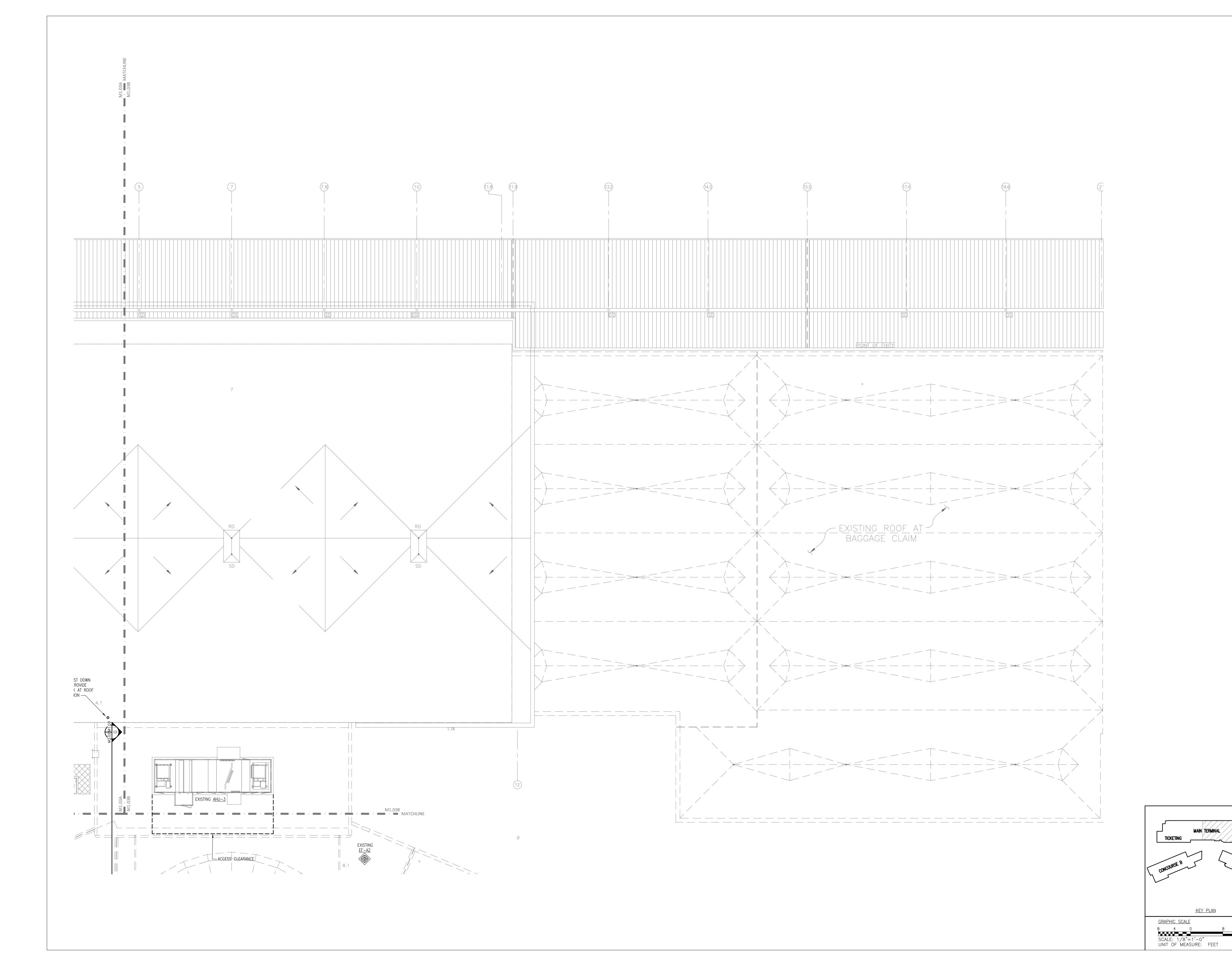


Architecture

© Copyright 2019 Gordon E. Johnson, AIA Reproduction or publication of this document is not permitted without the expressed consent of the above.


RMF ENGINEERING, INC. 8720 Red Oak Blvd, Suite 370 Charlotte, NC 28217 P: 704.909.6612 NC license No: C-1126 RMF Project No: 2153223.F0

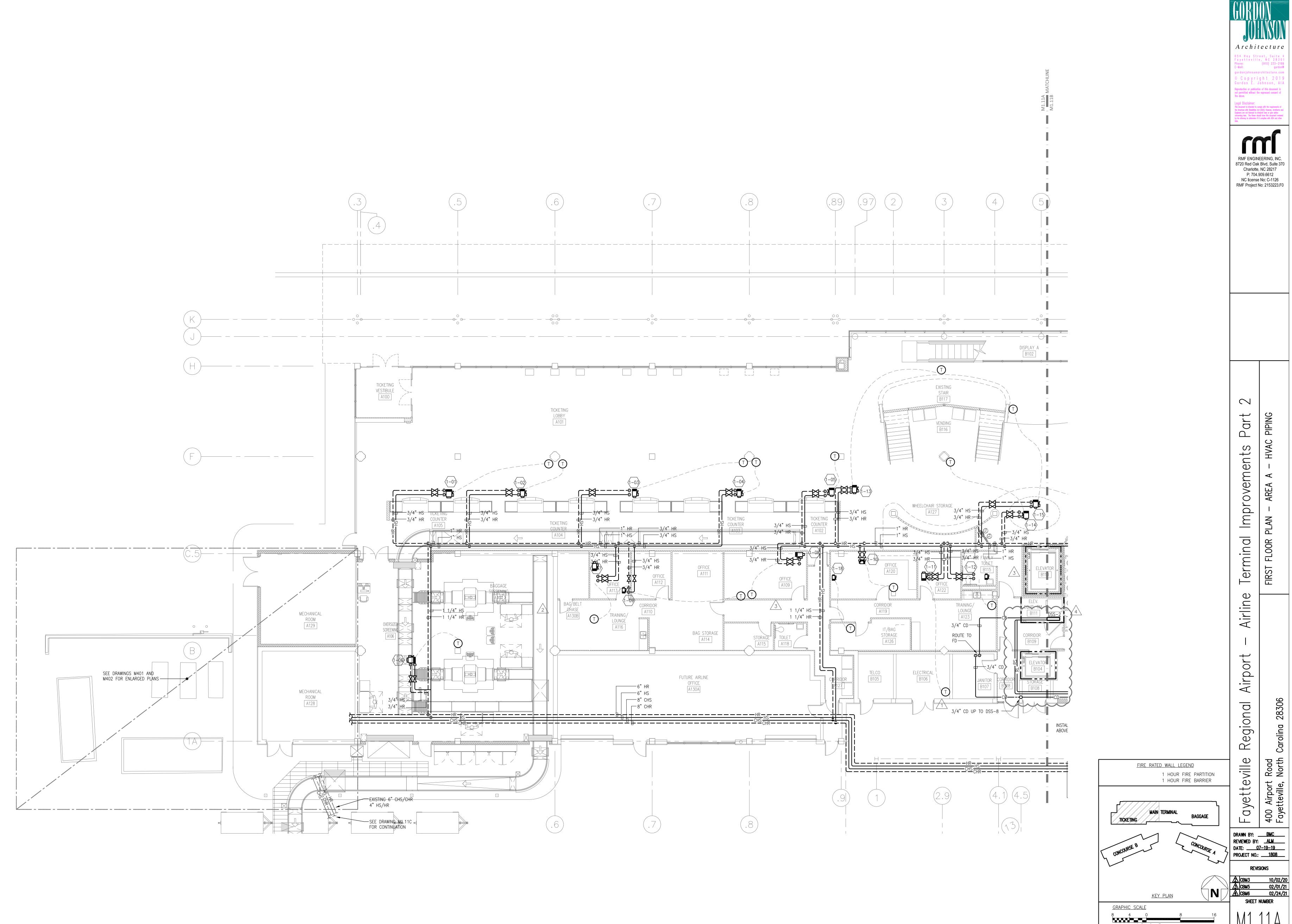
DRAWN BY: ___BMC REVIEWED BY: _ALM DATE: ___07-19-19 PROJECT NO.: ___1808



SHEET NUMBER

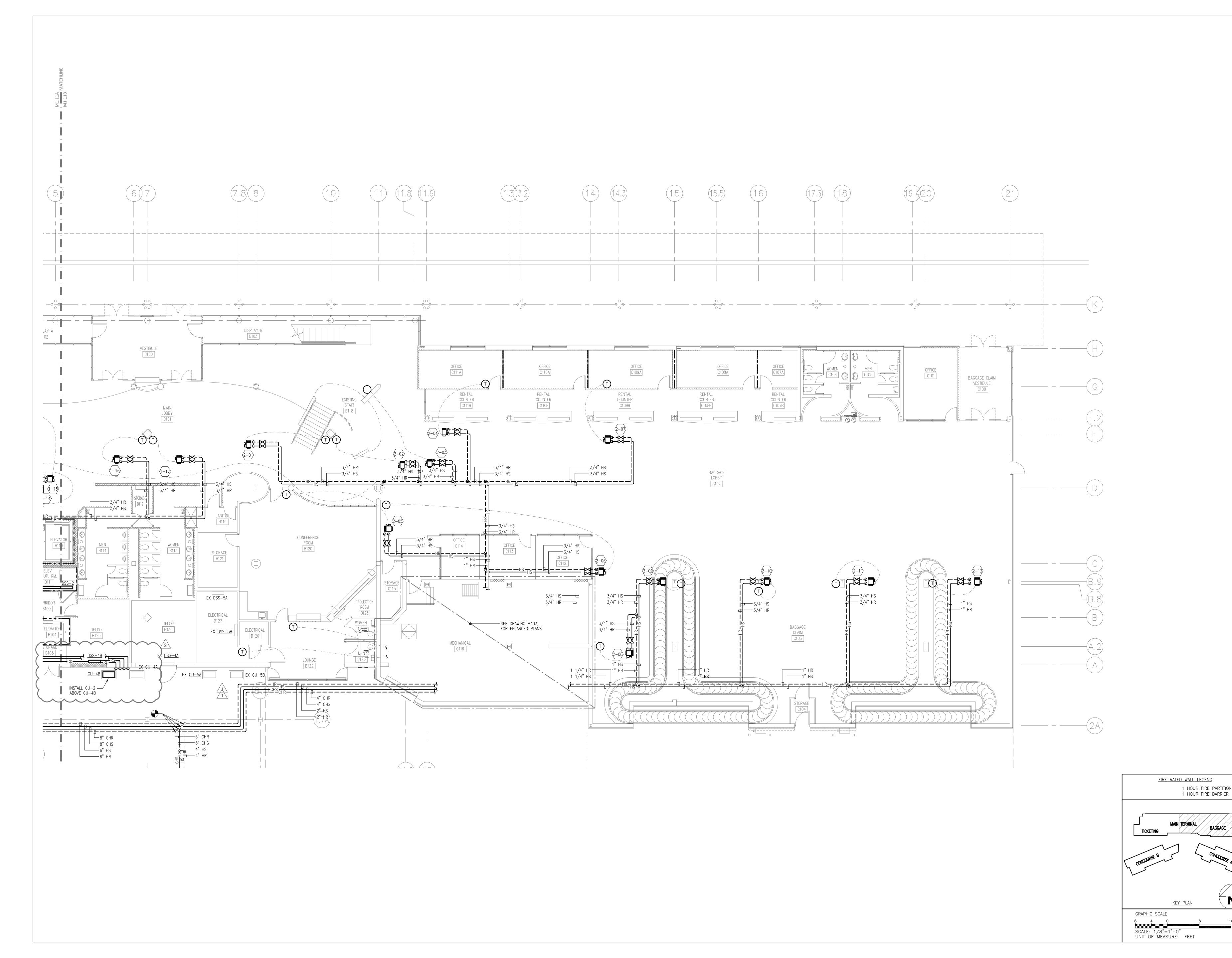
MAIN TERMINAL

 \sim



Fayetteville Regional Airport — Airline Terminal Improvements

BAGGAGE

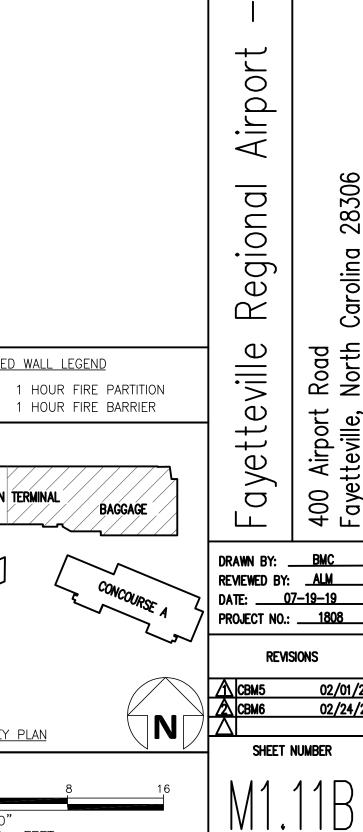

DRAWN BY: BMC
REVIEWED BY: ALM
DATE: 07-19-19
PROJECT NO.: 1808

REVISIONS

SCALE: 1/8"=1'-0" UNIT OF MEASURE: FEET

Architecture

654 Hay Street, Suite 4
Fayetteville, NC 28301
Phone: (910) 223-2186
E-Mail: gordon@
gordonjohnsonarchitecture.com
© Copyright 2019
Gordon E. Johnson, AIA
Reproduction or publication of this document is not permitted without the expressed consent of the above.


Legal Discloirner:
This document is intended to comply with the requirements of the Arméton with Disabilities Act (NA). However, Architects and Engineers are not iconsect to interpret lows or give advice concerning lows. The Owner should have this document reviewed by his ottomey to determine if R complies with ADA and other

 \sim

 \Box

erminal

- 1) MODIFY EXISTING HYDRONIC PIPING AS NECESSARY TO CONNECT TO NEW ABOVE—CEILING AIR HANDLER. INSULATE ALL NEW PIPING WITH INSULATION THAT IS LIKE IN KIND TO THE EXISTING.
- PROVIDE INDEECO TYPE QUA SLIP-IN DUCT HEATER. HEATER SHALL BE RATED FOR 3.5KW AND BE 208V/1ø/60Hz. SEE SPECIFICATIONS FOR EQUIVALENT MANUFACTURES.

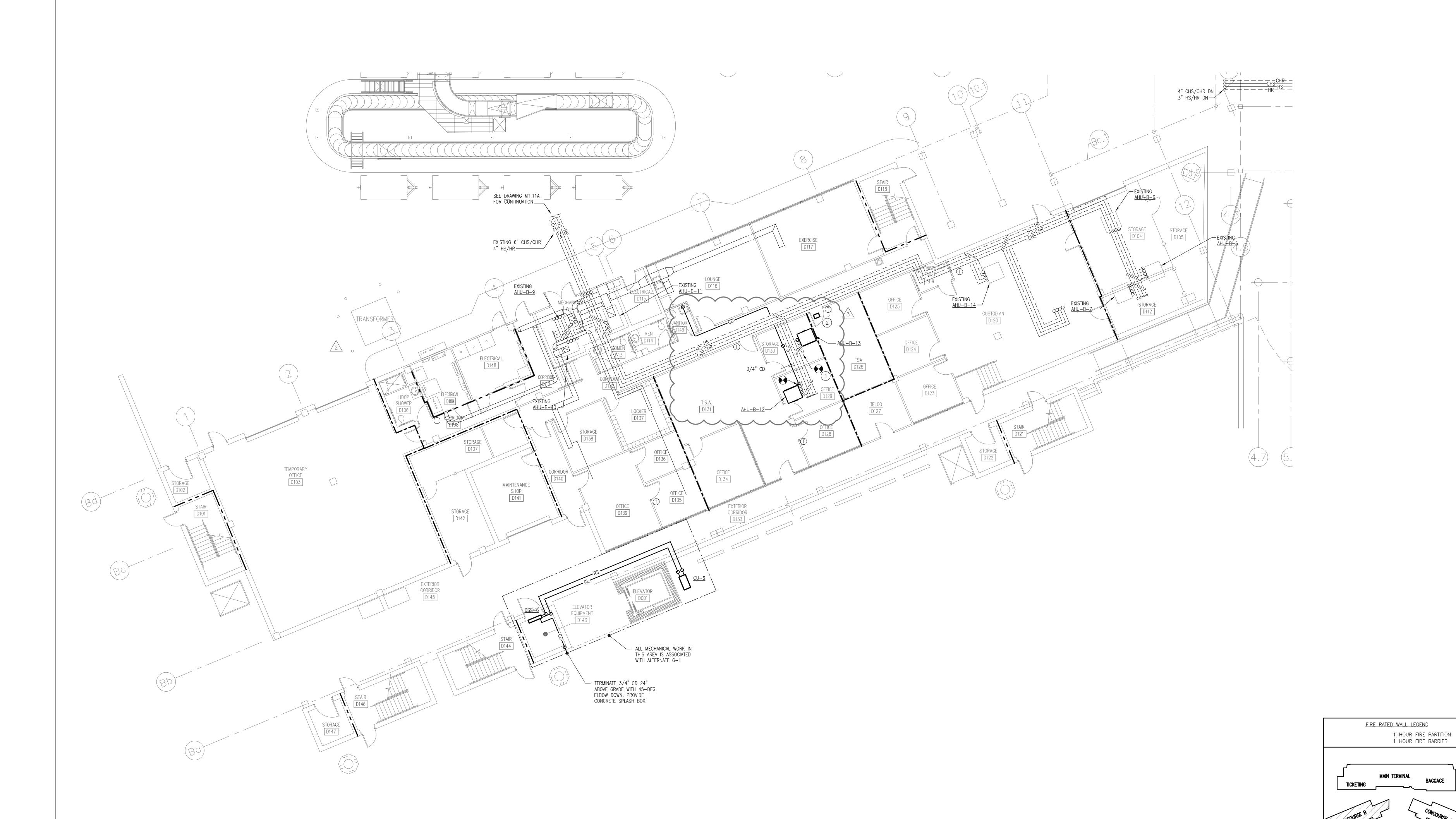
© Copyright 2019 Gordon E. Johnson, AIA Reproduction or publication of this document is not permitted without the expressed consent of the above.

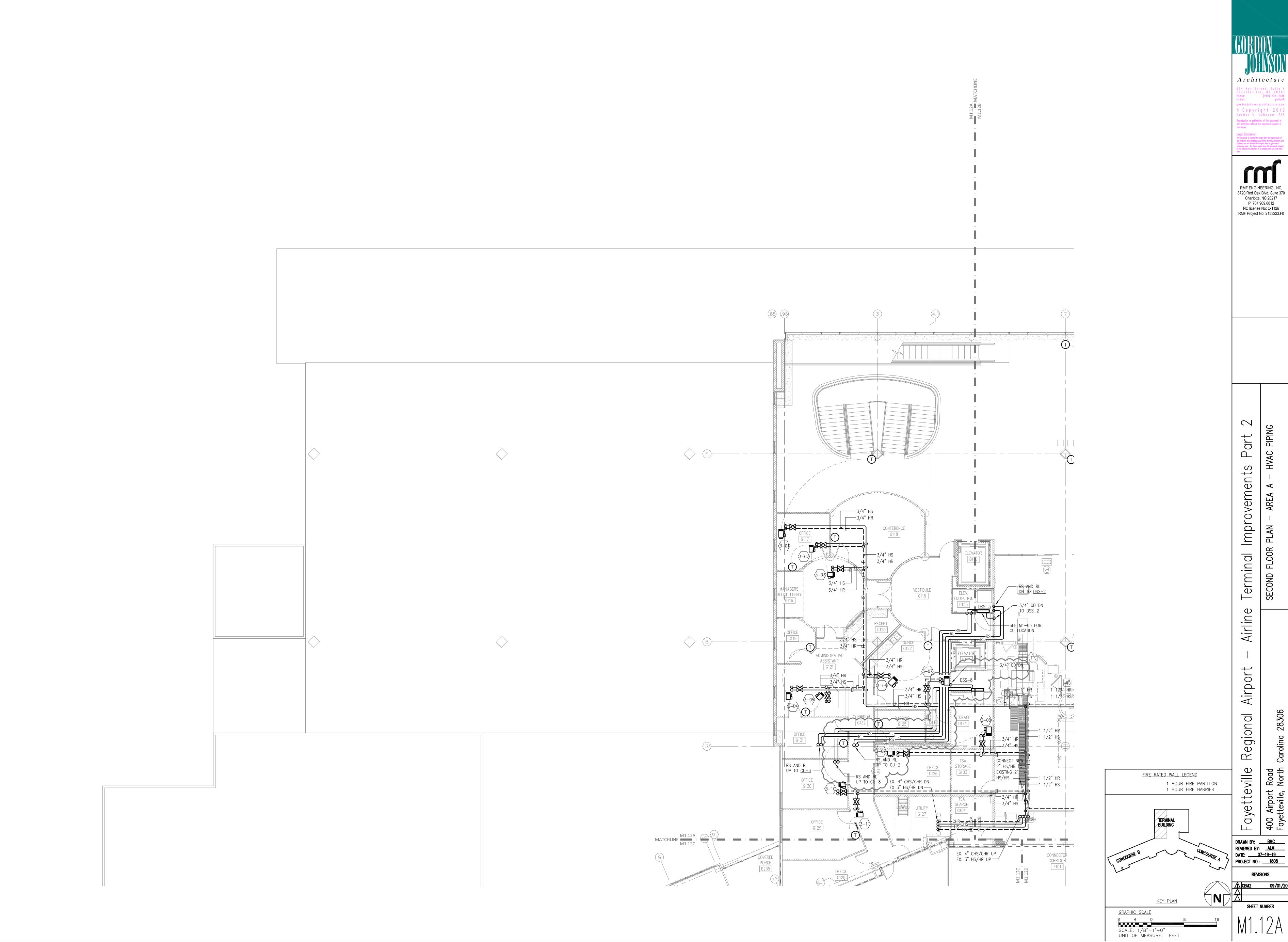
RMF ENGINEERING, INC. 8720 Red Oak Blvd, Suite 370 Charlotte, NC 28217 P: 704.909.6612 NC license No: C-1126 RMF Project No. 2153223.F0

 \sim Part Improvements Terminal

Airpor Regional eville

Fayette

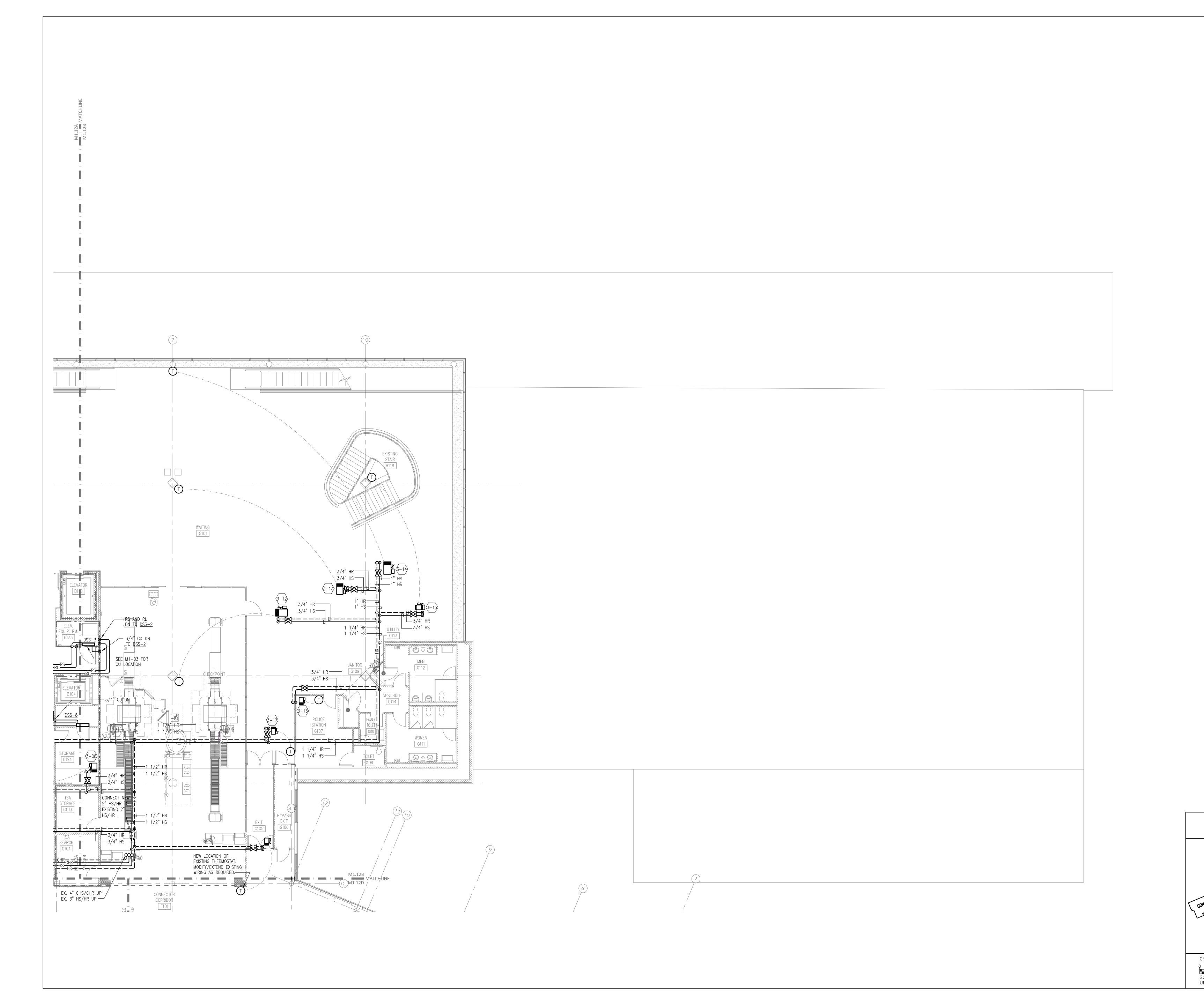

DRAWN BY: BMC
REVIEWED BY: ALM
DATE: 07-19-19
PROJECT NO.: 1808

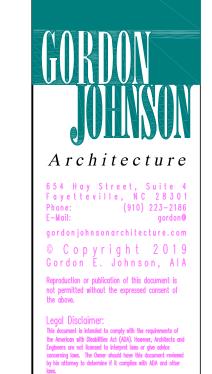

GRAPHIC SCALE

8 4 0

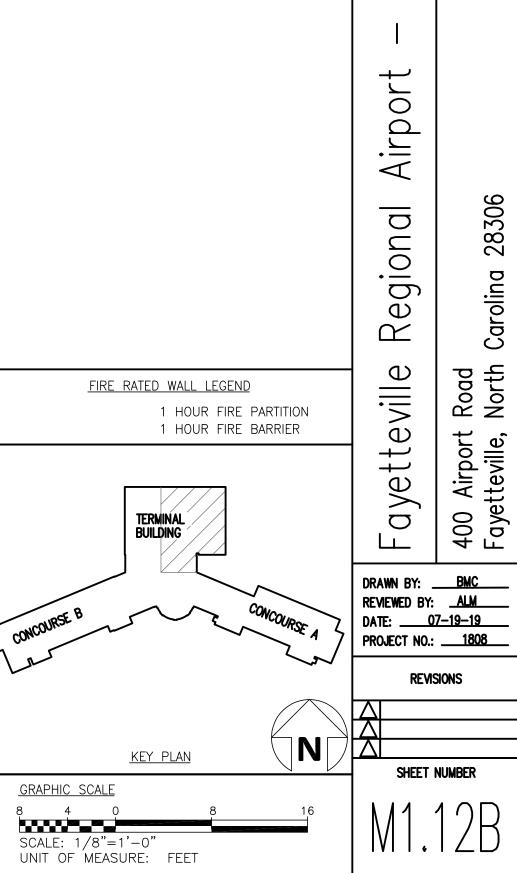
SCALE: 1/8"=1'-0"

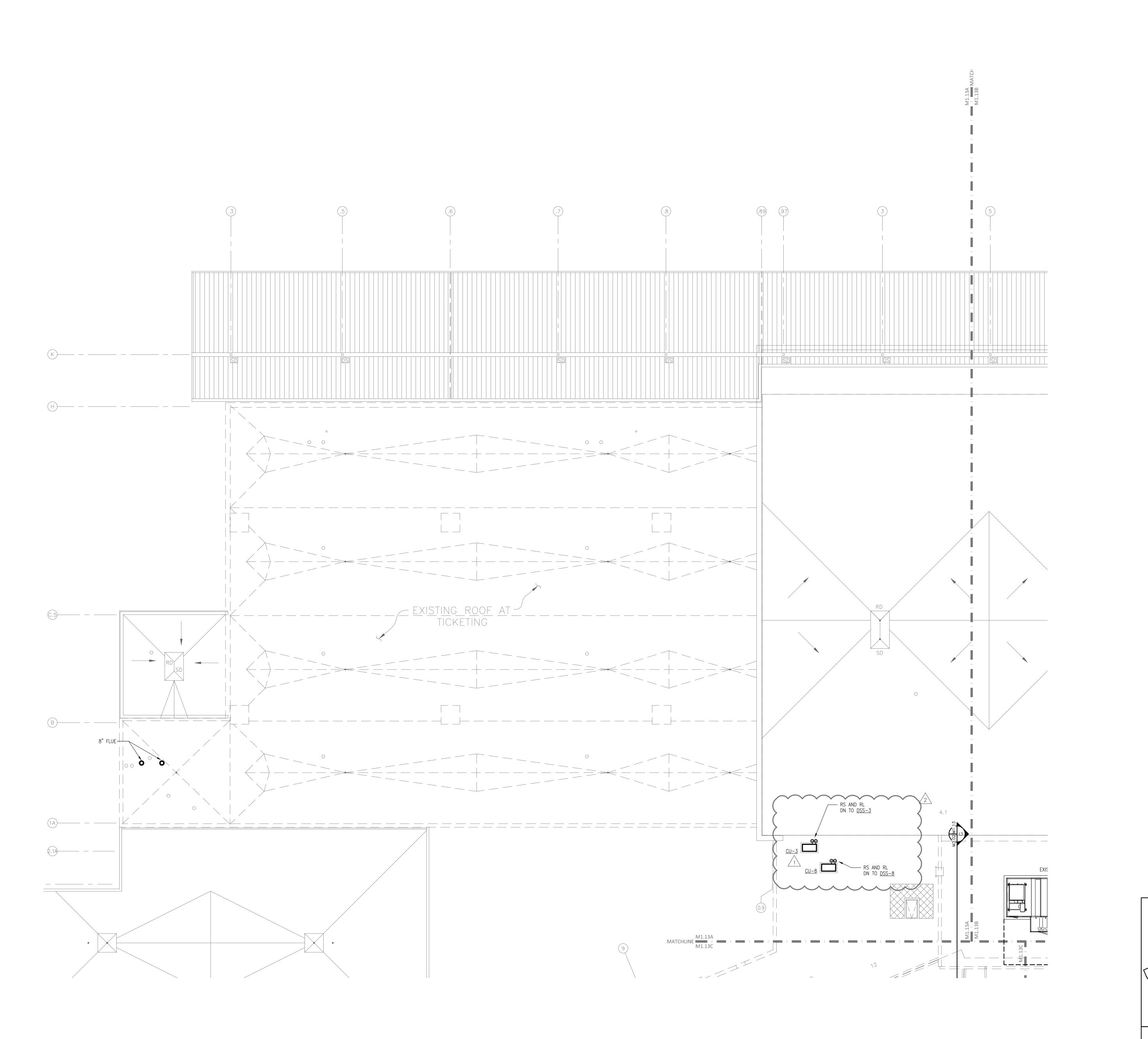
UNIT OF MEASURE: FEET

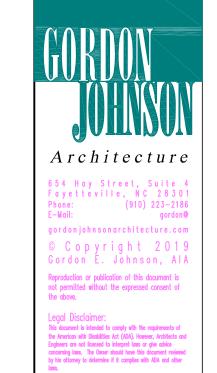




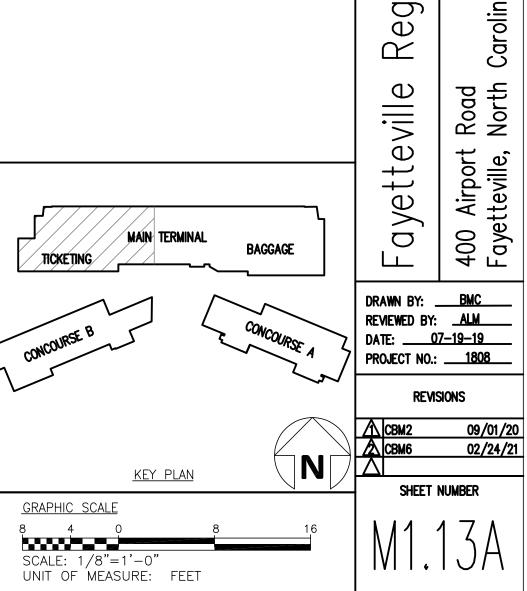
Architecture © Copyright 2019 Gordon E. Johnson, AIA Reproduction or publication of this document is not permitted without the expressed consent of the above.

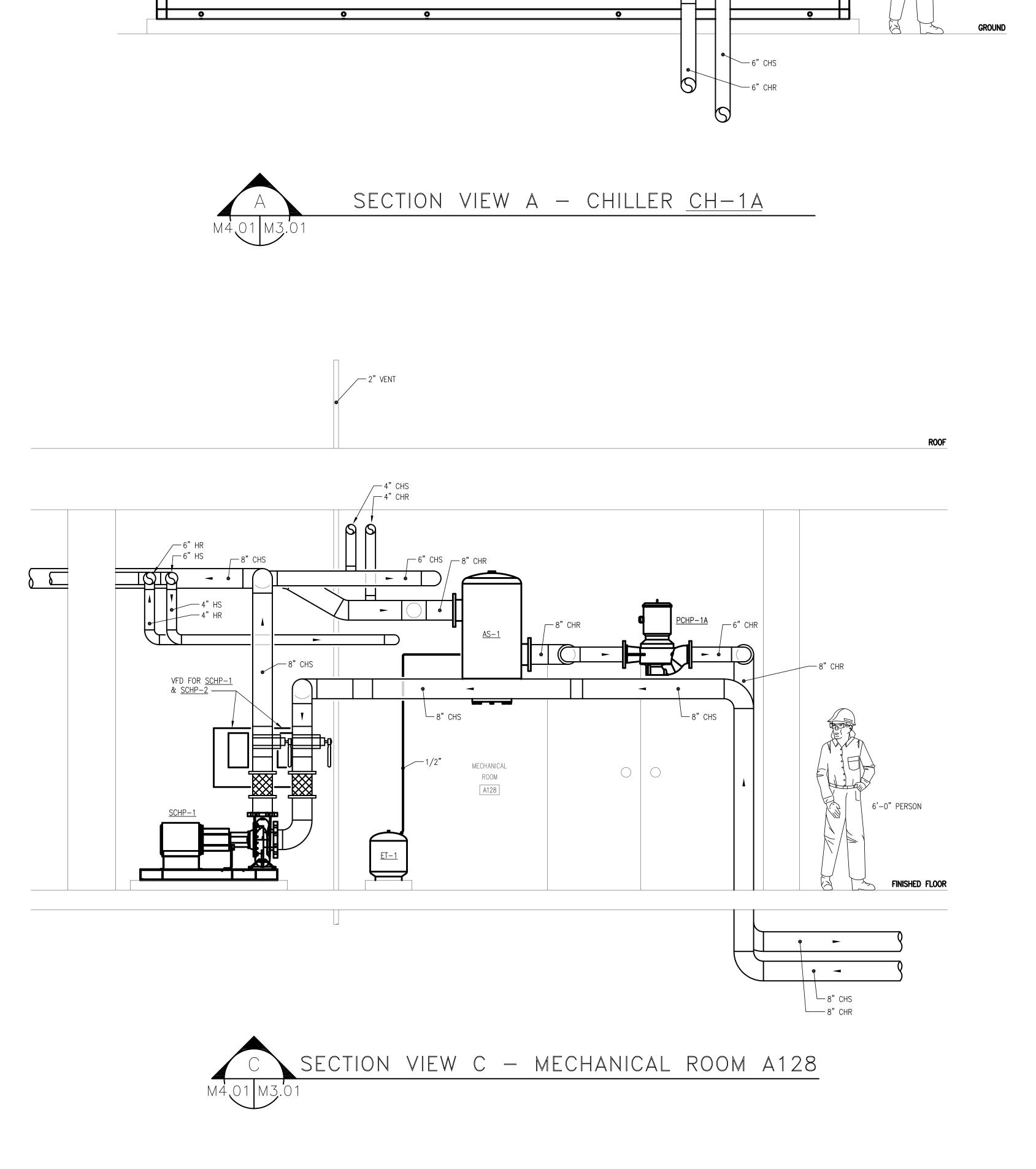


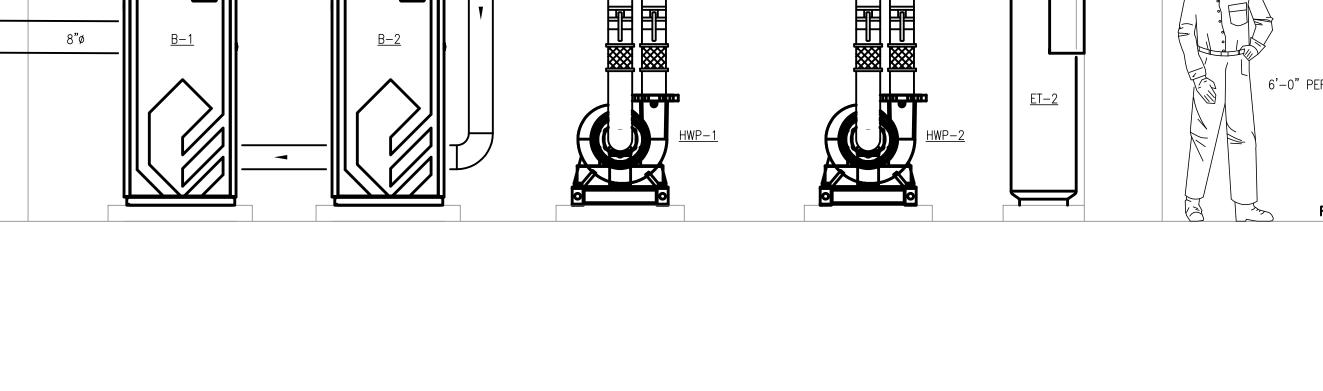


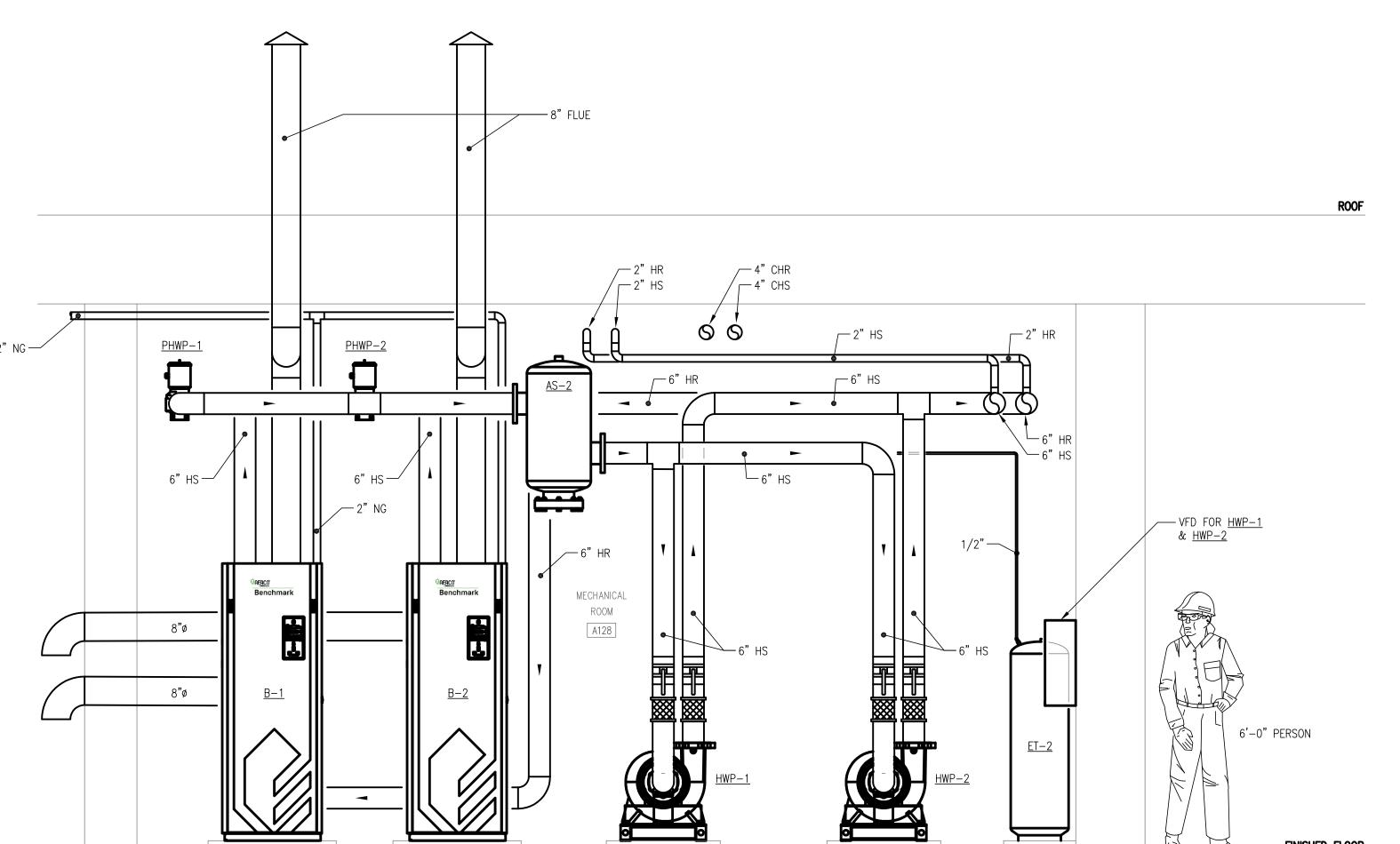


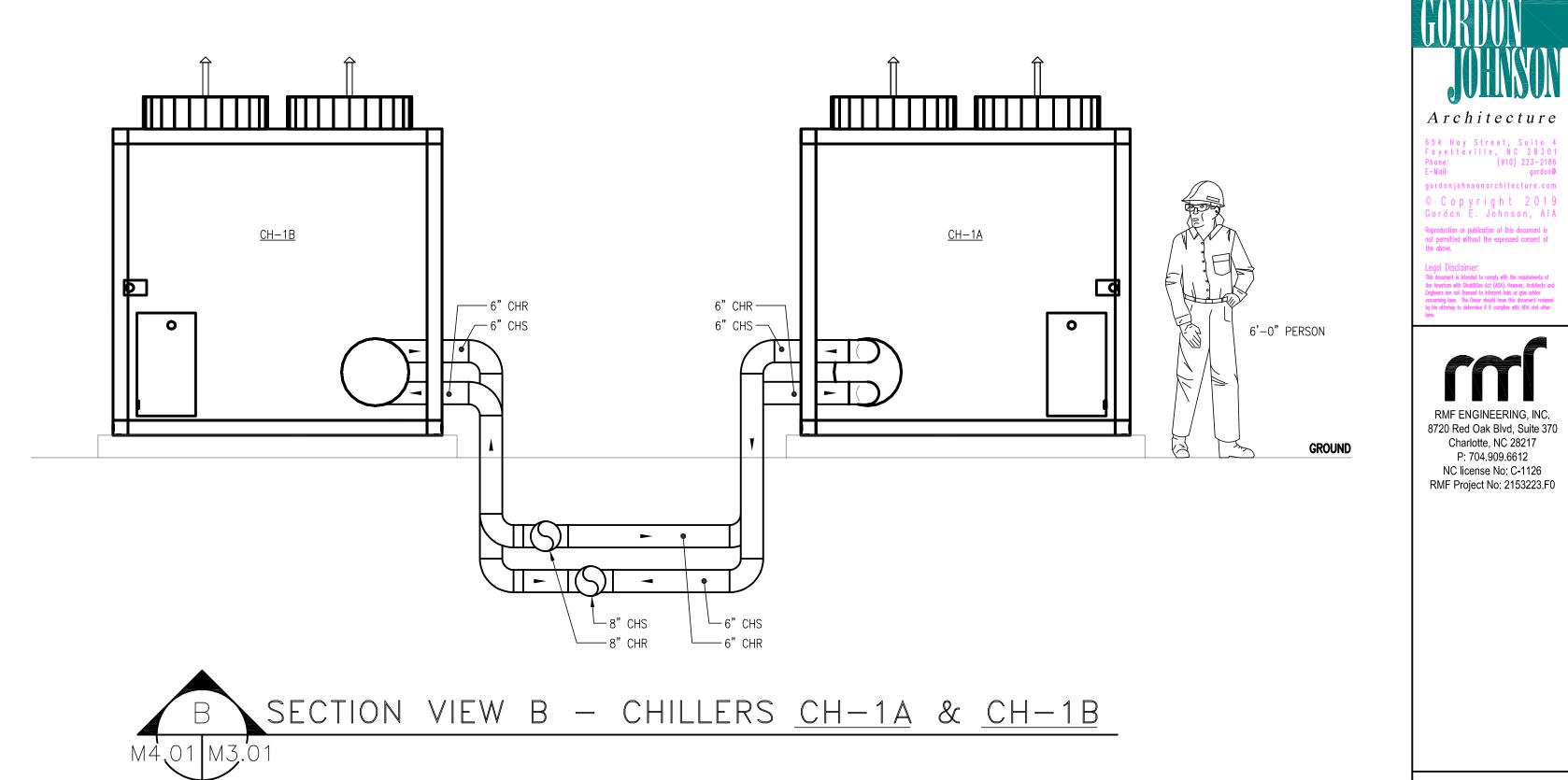
 \sim

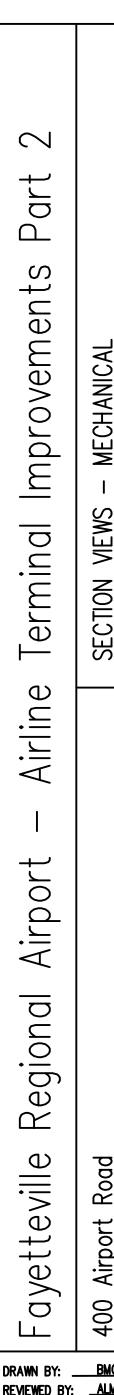

Terminal





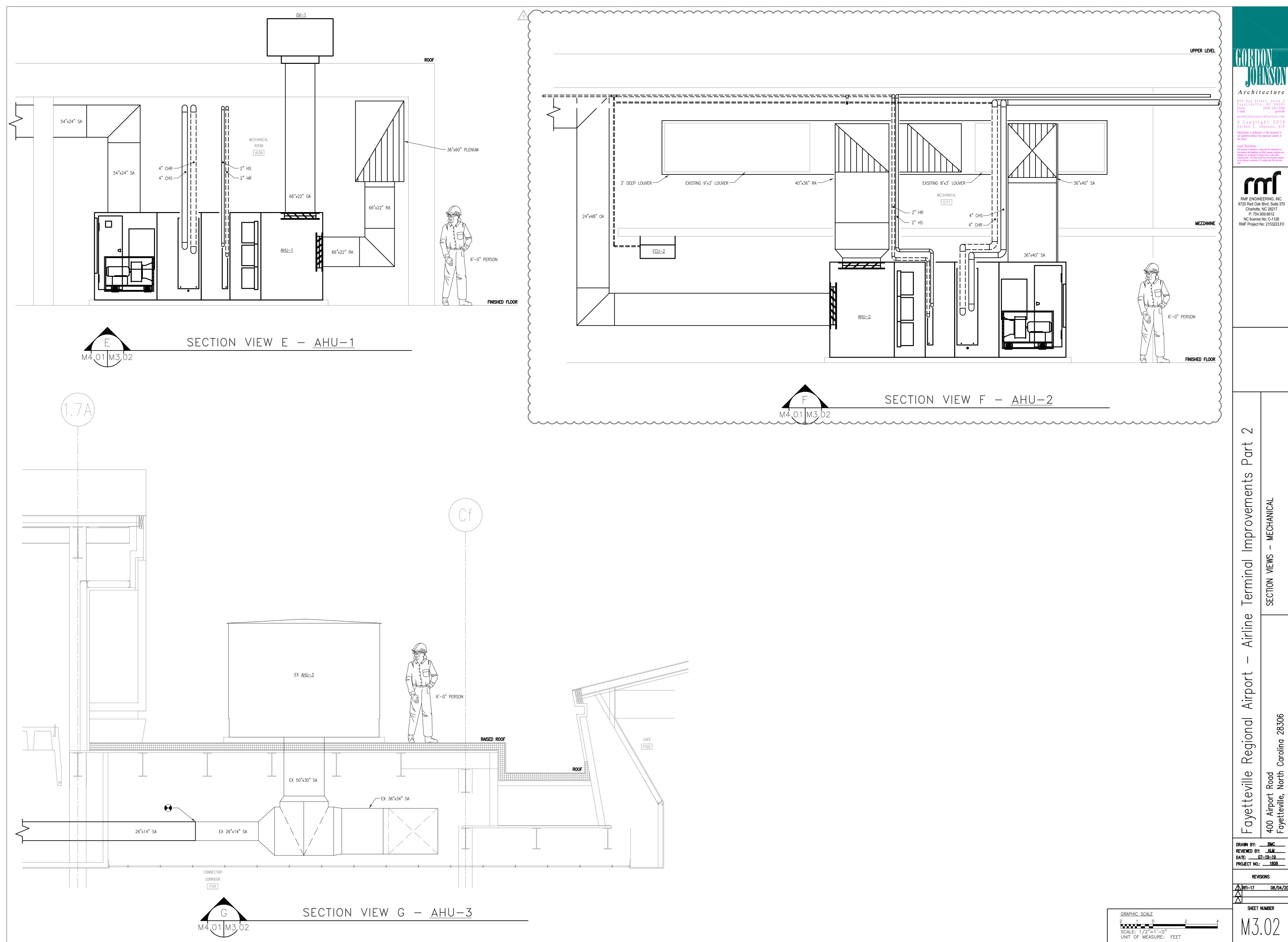






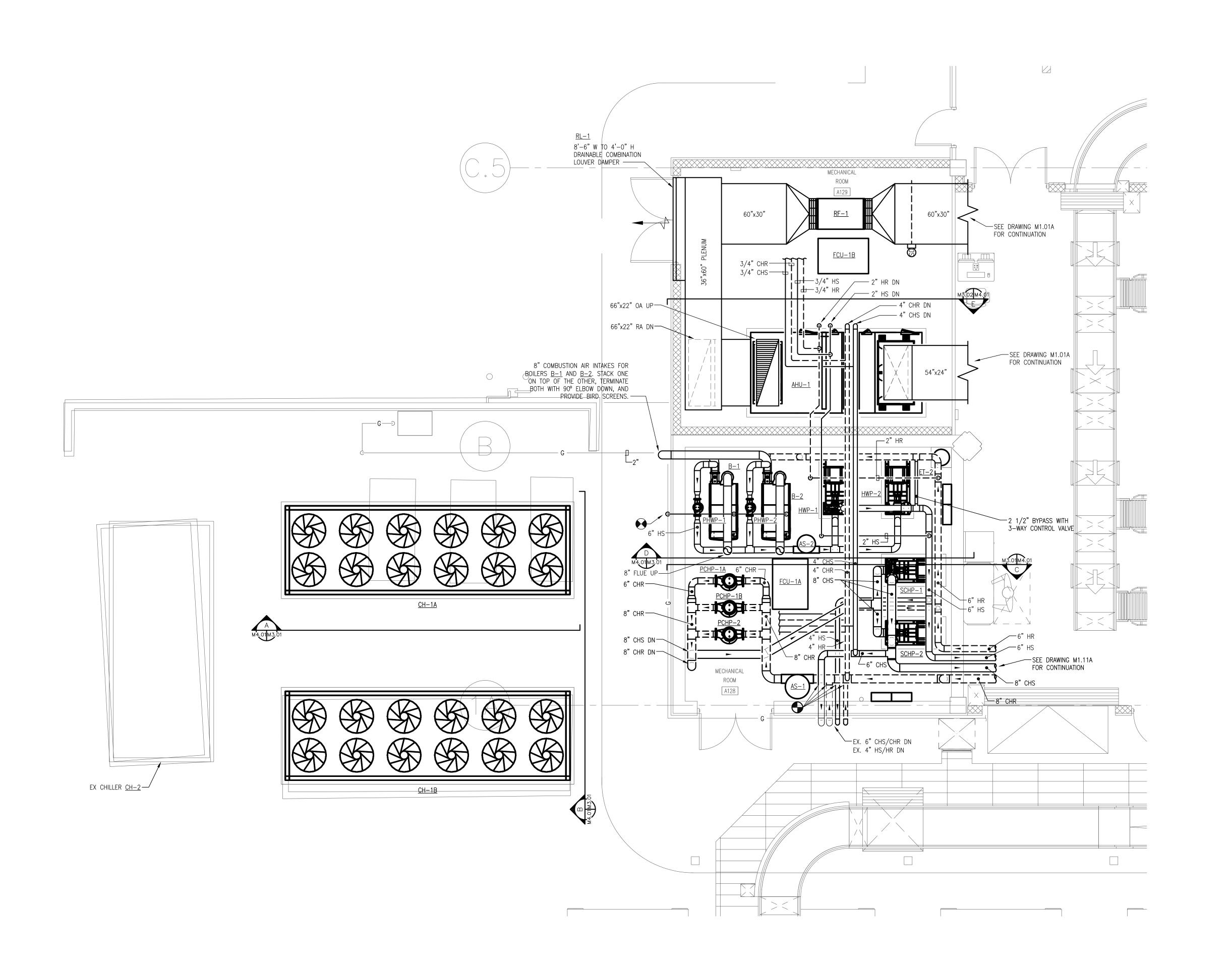
6'-0" PERSON

Fayette REVIEWED BY: ALM
DATE: 07-19-19
PROJECT NO.: 1808


SHEET NUMBER

REVISIONS

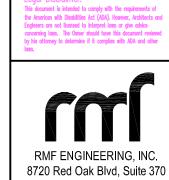
M3.01


GRAPHIC SCALE

SCALE: 1/2"=1'-0" UNIT OF MEASURE: FEET

RMF ENGINEERING, INC. 8720 Red Oak Blvd, Suite 370 Charlotte, NC 28217 P: 704.909.6612

NC license No: C-1126 RMF Project No. 2153223.F0



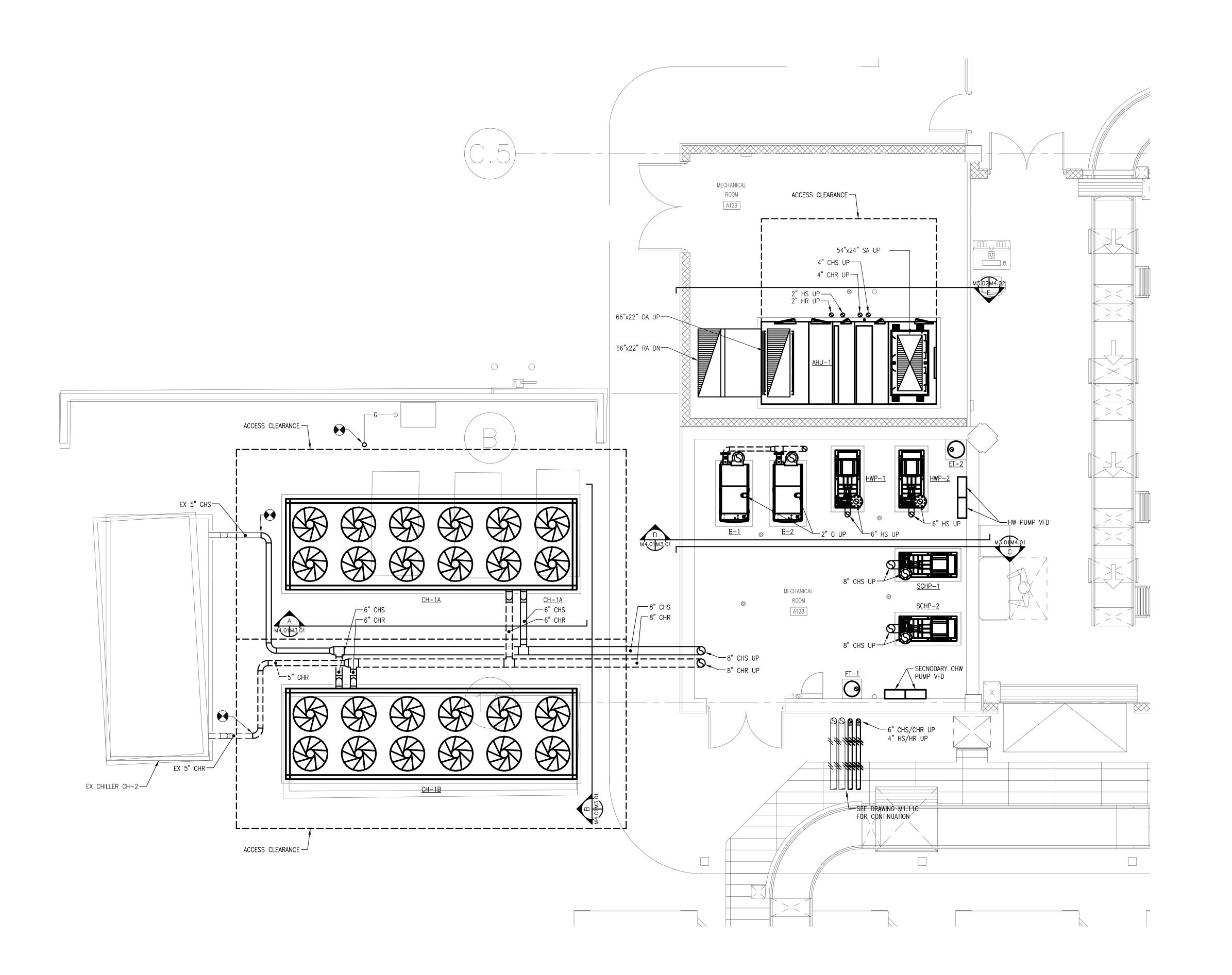
Architecture

654 Hay Street, Suite 4
Fayetteville, NC 28301
Phone: (910) 223-2186
E-Mail: gordon®
gordonjohnsonarchitecture.com
© Copyright 2019
Gordon E. Johnson, AIA
Reproduction or publication of this document is not permitted without the expressed consent of the chove.

Legal Disclaimer:
This document is intended to comply with the requirements of the American with Dischillies Act (AOA). However, Architects and Feathers are not lineared to linear to make a coding

RMF ENGINEERING, INC. 8720 Red Oak Blvd, Suite 370 Charlotte, NC 28217 P: 704.909.6612 NC license No: C-1126 RMF Project No: 2153223.F0

Fayetteville Regional Airport — Airline Terminal Improvements


 \sim

DRAWN BY: ___BMC ___ REVIEWED BY: __ALM ___ DATE: ___07-19-19 ___ PROJECT NO.: ___1808 ___

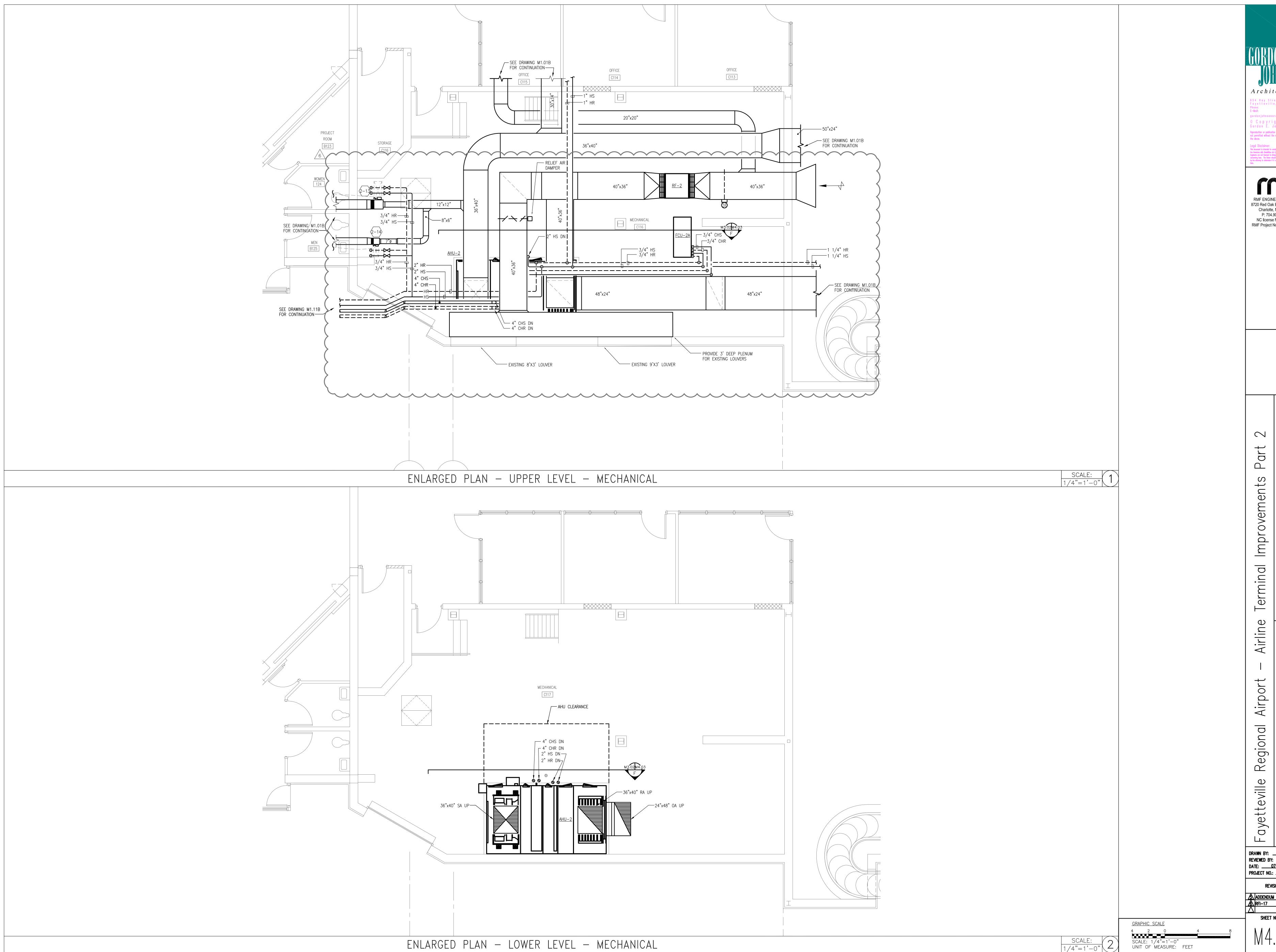
REVISIONS

ADDENDUM 5 12/19/19

SHEET NUMBER

Terminal Airpor

 \sim

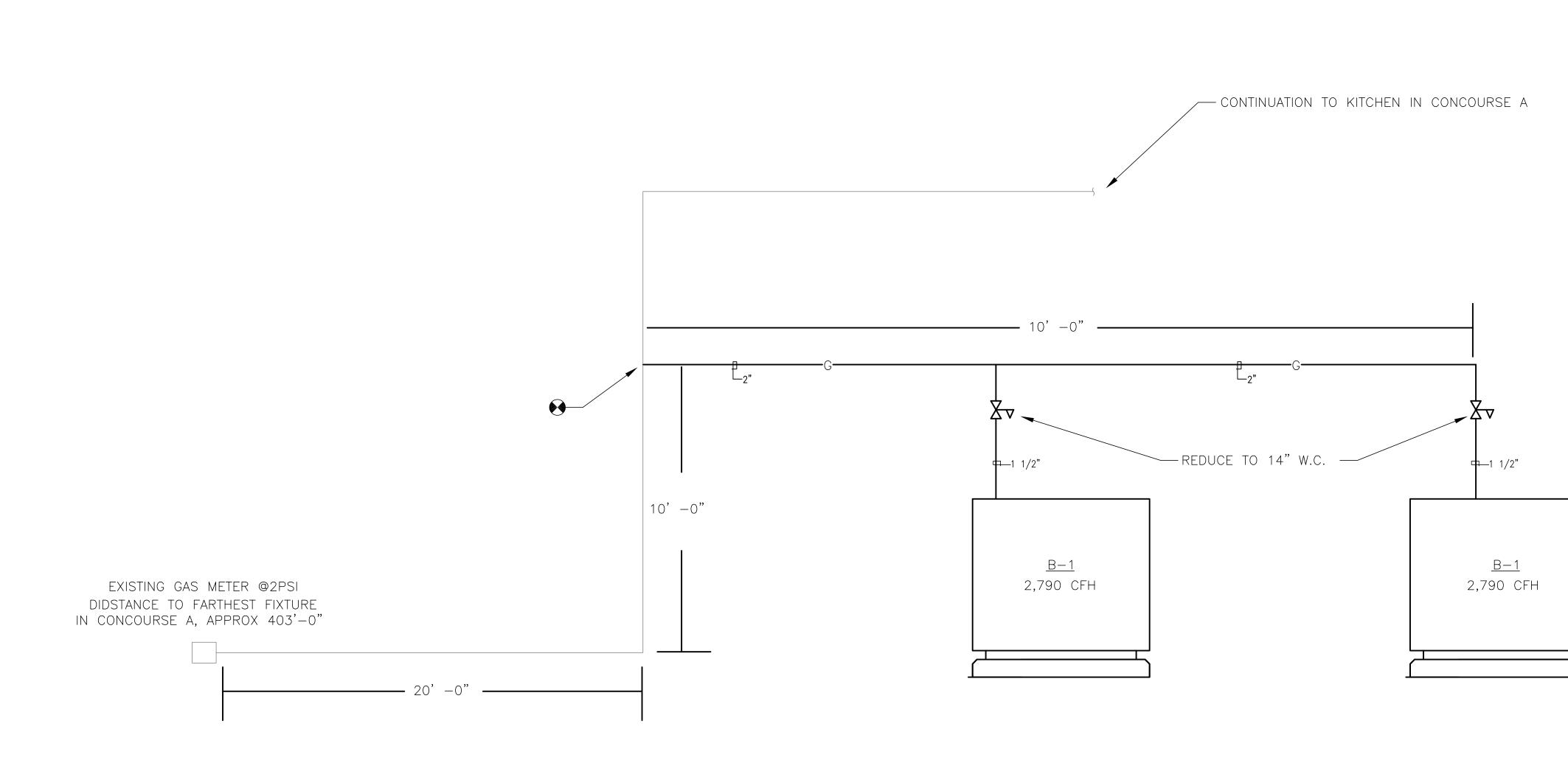

Fayetteville

DRAWN BY: BMC

REVIEWED BY: ALM

DATE: 07-19-19

PROJECT NO.: 1808



Architecture

© Copyright 2019 Gordon E. Johnson, AIA Reproduction or publication of this document is not permitted without the expressed consent of the above.

RMF ENGINEERING, INC. 8720 Red Oak Blvd, Suite 370 Charlotte, NC 28217 P: 704 909 6612 NC license No: C-1126 RMF Project No. 2153223.F0

DRAWN BY: BMC
REVIEWED BY: ALM
DATE: 07-19-19
PROJECT NO.: 1808

 \sim Improvements

Architecture

© Copyright 2019 Gordon E. Johnson, AIA

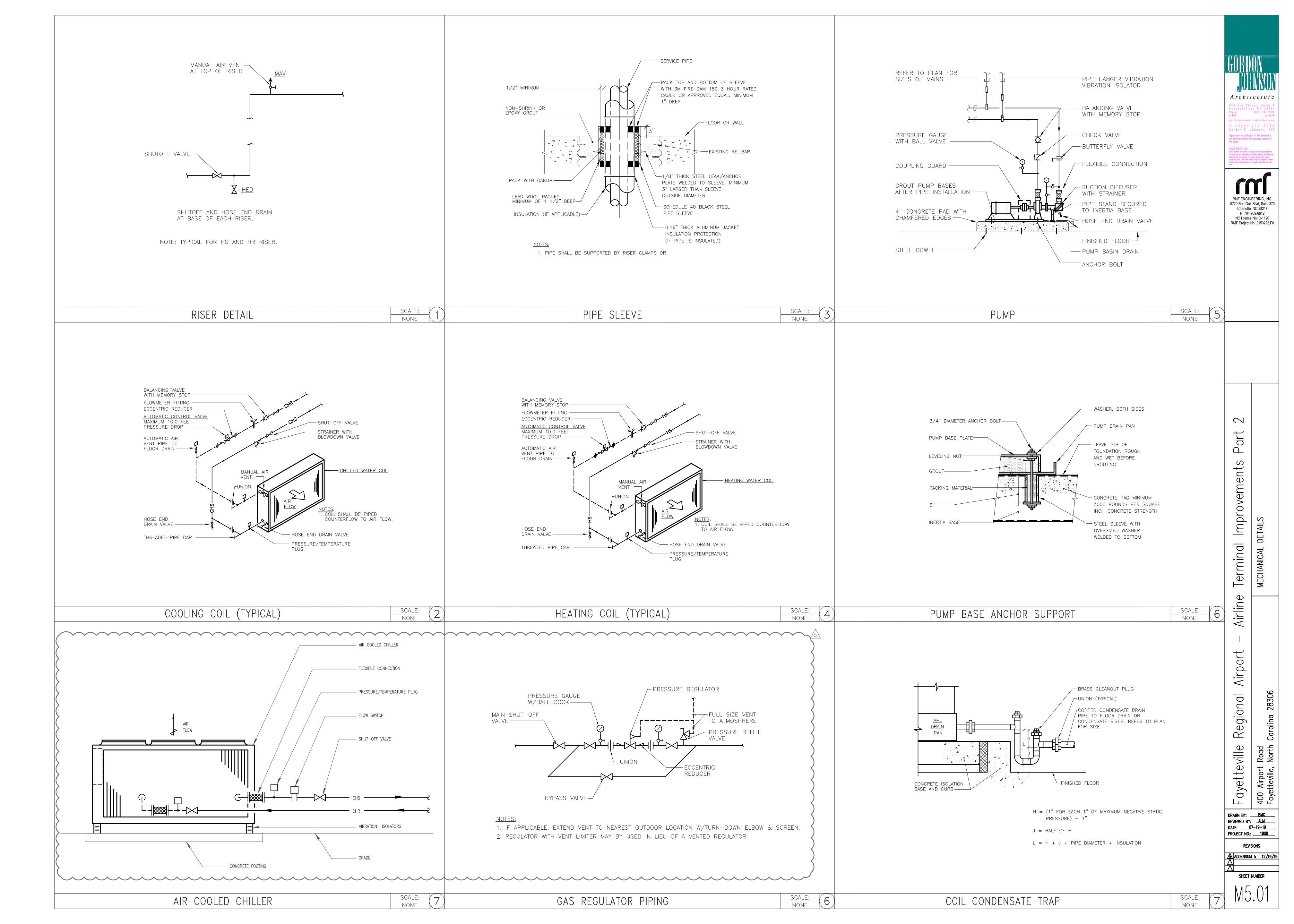
Reproduction or publication of this document is not permitted without the expressed consent of the above.

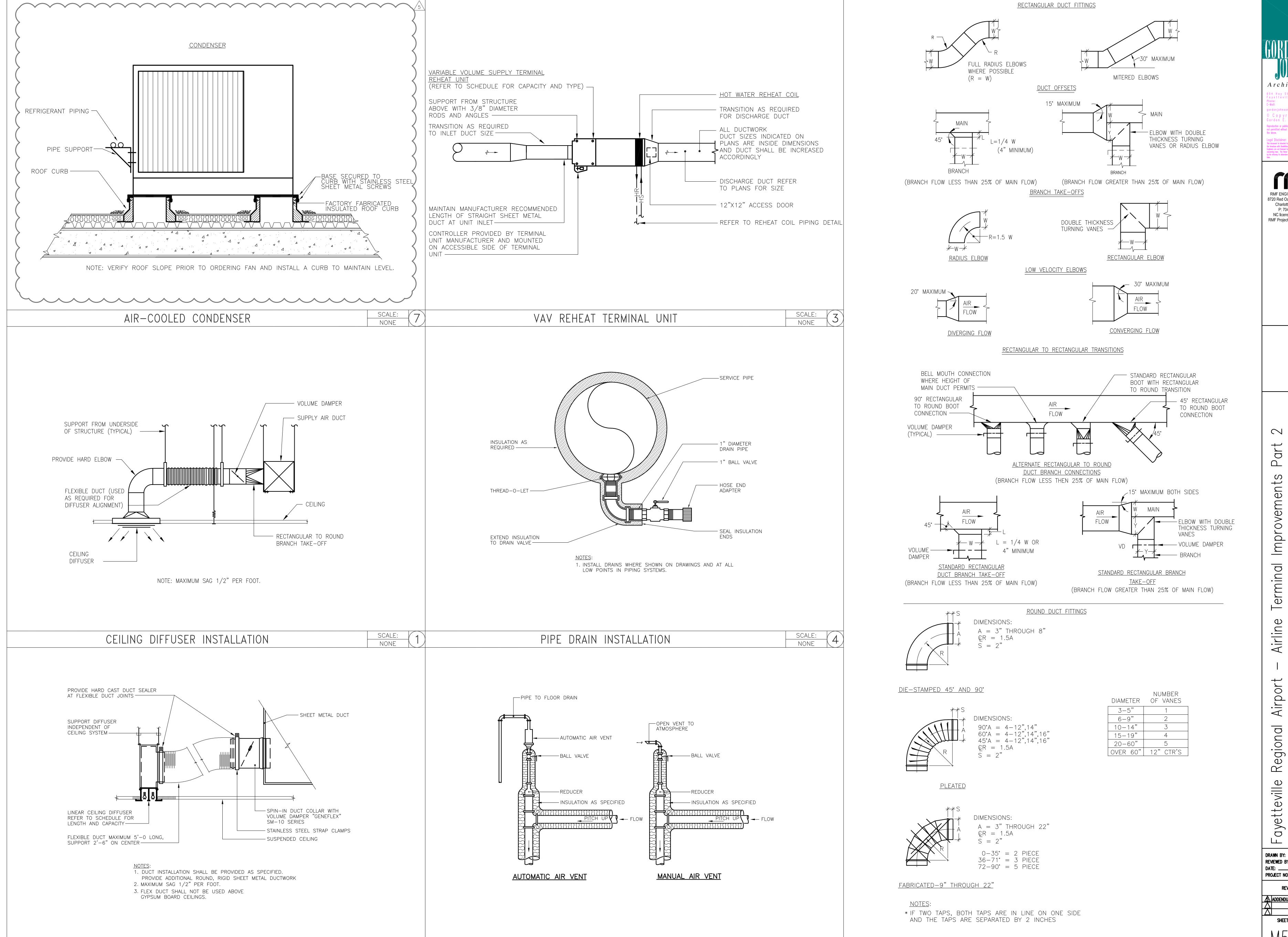
RMF ENGINEERING, INC. 8720 Red Oak Blvd, Suite 370 Charlotte, NC 28217 P: 704.909.6612 NC license No: C-1126 RMF Project No: 2153223.F0

Terminal Airpor

Fayetteville DRAWN BY: BMC

REVIEWED BY: ALM


DATE: 07-19-19


PROJECT NO.: 1808

REVISIONS ADDENDUM 5 12/19/19 SHEET NUMBER

GRAPHIC SCALE SCALE: 1/4"=1'-0" UNIT OF MEASURE: FEET

GAS RISER DIAGRAM

AIR VENT

SCALE: NONE

CEILING SLOT DIFFUSER INSTALLATION

SCALE: 5

RECTANGULAR/ROUND DUCT FITTINGS

Architecture

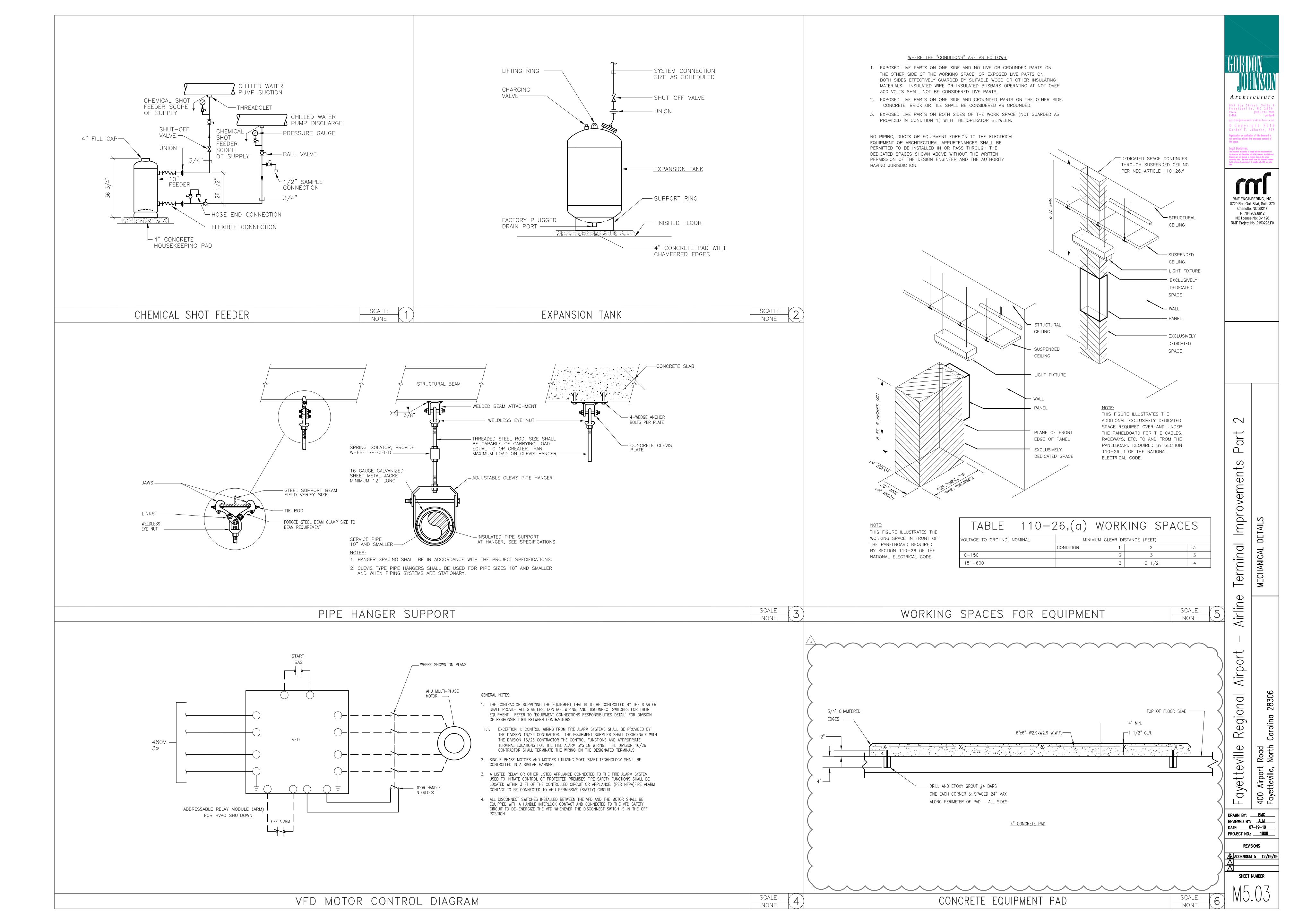
Copyright 201 Gordon É. Johnson, A Reproduction or publication of this document is not permitted without the expressed consent of the above. Legal Disclaimer:
This document is intended to comply with the requires
the American with Dischillities Act (ADA). However, Arch
ingleness are not Bossed to Interpret Loss or give of
somerning loss. The Owner should have this documen
r his ottomey to determine if it complies with ADA or

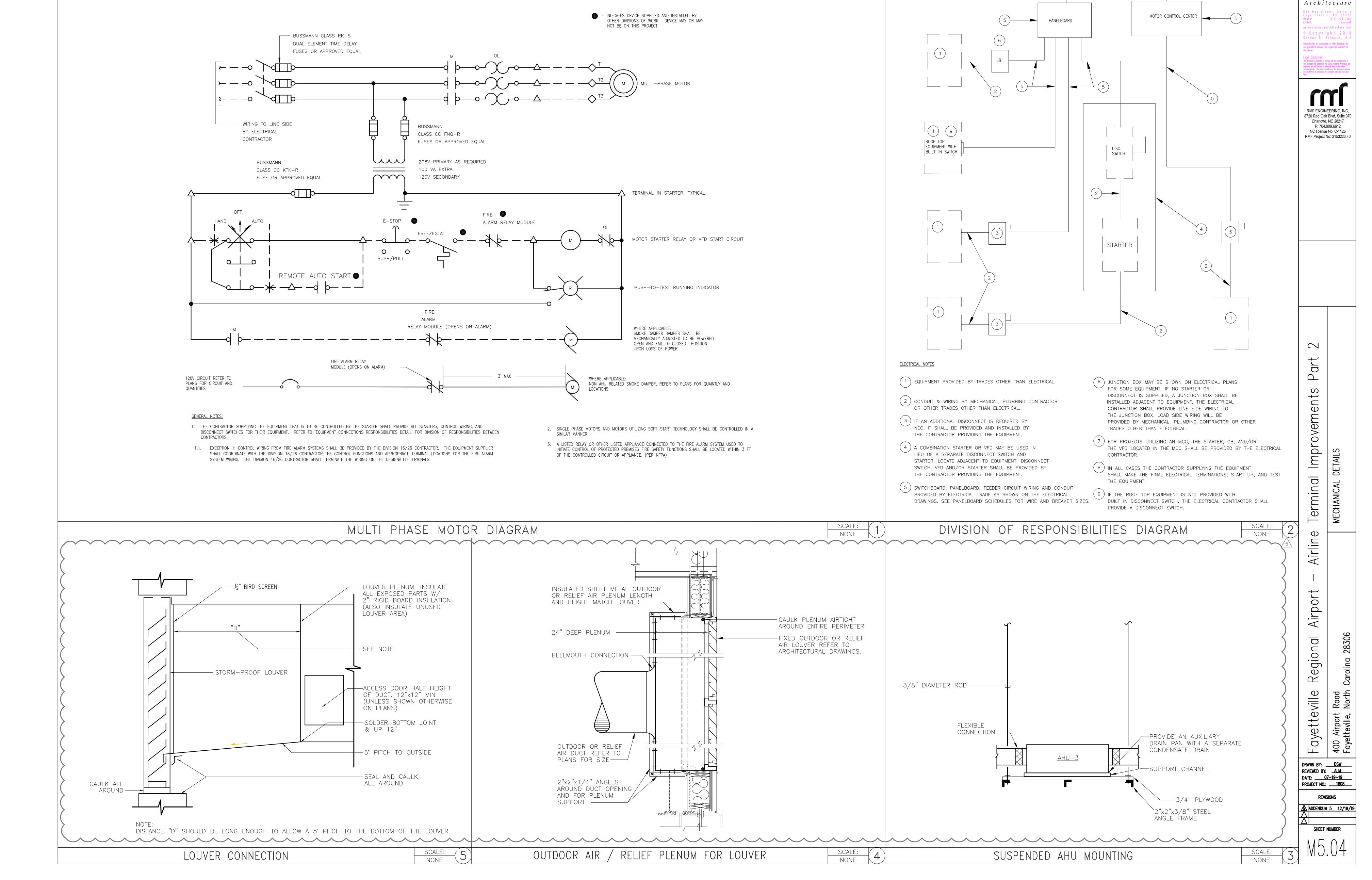
RMF ENGINEERING, INC.

8720 Red Oak Blvd, Suite 370 Charlotte, NC 28217 P: 704.909.6612 NC license No: C-1126 RMF Project No. 2153223.F0

 \Box 4 en vem Improv erminal \vdash Θ Airlin

0 9 Air \overline{Q} egion


> Fayett DRAWN BY: BMC REVIEWED BY: ALM DATE: <u>07-19-19</u>


PROJECT NO.: <u>1808</u> REVISIONS ADDENDUM 5 12/19/19

SHEET NUMBER

SCALE:

NONE

SWITCHBOARD

WATER PRESSURE DROP AT MAXIMUM DESIGN FLOW RATE.

a. General

- 1. THE SEQUENCE DESCRIBES THE GENERAL INTENT OF THE CONTROL SYSTEMS. PROVIDE ALL DEVICES, EQUIPMENT, AND WIRING AS REQUIRED TO PERFORM THE SEQUENCES DESCRIBED HEREIN.
- 2. UNLESS OTHERWISE NOTED, SIZE ALL AUTOMATIC CONTROL VALVES FOR MAXIMUM TEN (10) FEET
- 3. SEE PLANS FOR LOCATION OF ALL ROOM THERMOSTATS, PANELS, DAMPERS, VALVES, AND EQUIPMENT; WHERE SUCH DEVICES ARE NOT INDICATED BUT REQUIRED BY THE SEQUENCES, THEY SHALL BE PROVIDED AND LOCATED IN THE FIELD BY THE ENGINEER.
- 4. ALL PUMPS SHALL BE PROVIDED WITH DIFFERENTIAL PRESSURE SENSORS INSTALLED AROUND THE PUMP OR FAN. SWITCHES SHALL PROVIDE STATUS FOR PUMP AND FAN OPERATION.
- 5. ALL TEMPERATURE, PRESSURE, AND TIME SET POINTS SHALL BE FULLY ADJUSTABLE FROM THE BUILDING MANAGEMENT SYSTEM (BMS).
- 6. PROVIDE ALL HARDWARE, SOFTWARE, DEVICES, EQUIPMENT, AND WIRING AS REQUIRED TO INTERFACE WITH THE BMS.
- 7. REFER TO INPUT/OUTPUT SUMMARY SCHEDULE FOR ADDITIONAL CONTROL ITEMS NOT DESCRIBED IN THE SEQUENCES. INPUT/OUTPUT SUMMARY ARE MINIMUM REQUIREMENTS, PROVIDE ALL REQUIRED POINTS FOR COMPLETE OPERATION OF THE SYSTEM.
- 8. ALL VARIABLE FREQUENCY DRIVES FOR PUMPS SHALL BE SOFT STARTED AT MINIMUM SPEED AND INCREASED TO OPERATING SPEED BY THE BMS.
- 9. THE CHILLED WATER SYSTEM SHALL BE CONTROLLED BY AN INDEPENDENT NET WORK AREA CHILLED WATER PLANT CONTROLLER (CWPC). THE CWPC SHALL BE PROVIDED WITH THE FOLLOWING FEATURES:
- a. OPEN PROTOCOL LON OR BACNET OPERATOR GRAPHICAL INTERFACE.
- b. SYSTEM START/STOP WITH MANUAL AND AUTOMATIC CONTROL.
- c. CHILLER AND CHILLED WATER PUMP SEQUENCING INCLUDING AUTOMATIC ROTATION. d. FAILURE RECOVERY DIAGNOSTICS AND PROTECTION.
- e. SYSTEM STATUS AND TRENDING CAPABILITIES. f. CHILLED WATER PLANT OPTIMIZATION.
- 11. THE CONTROL CONTRACTOR SHALL PREPARE AND SUBMIT FOR APPROVAL A COMPLETE COMPOSITE CONTROL AND INTERLOCK WIRING DIAGRAM DEPICTING THE CHILLED WATER SYSTEM PROVIDED. THE CONTROL CONTRACTOR SHALL BE RESPONSIBLE FOR AND SHALL PROVIDE ALL CONTROL AND INTERLOCK WIRING FOR THE ENTIRE SYSTEM INCLUDING THE CHILLER CONTROL SYSTEM AND COMMUNICATION MODULE PROVIDED BY THE CHILLER MANUFACTURER. DIAGRAMS SHALL CLEARLY SHOW HOW CHILLER CONTROLS AND OTHER DEVICES WILL BE INTERFACED WITH THE CONTROL
- 12. THE CHILLED WATER PLANT SYSTEM SHALL HAVE TWO BASIC OPERATIONAL MODES FOR THE CHILLER PLANT: AUTOMATIC AND MANUAL. IN AUTOMATIC MODE, THE BMS VIA THE <u>CWPC</u> COMMUNICATION INTERFACE INFRASTRUCTURE SHALL AUTOMATICALLY START/STOP CHILLERS, PUMPS, ETC. ACCORDING TO THE SEQUENCES DESCRIBED HEREIN. IN MANUAL MODE THE PLANT OPERATOR SHALL BE RESPONSIBLE FOR MANUALLY SELECTING THE CHILLER "START" PUSHBUTTON FOR EACH CHILLER AND CORRESPONDING PRIMARY CHILLED WATER PUMP AND SECONDARY CHILLED WATER PUMP.
- 13. THE <u>CWPC</u> AND THE BMS VIA THE <u>CWPC</u> COMMUNICATION INTERFACE INFRASTRUCTURE SHALL PROVIDE ALL STATUS AND ALARM MONITORING FOR EACH SYSTEM COMPONENT AND ALSO INDICATE CHILLER DIAGNOSTIC.
- 14. UPON START OF THE CHILLED WATER PLANT THE FOLLOWING SHALL TREND AUTOMATICALLY EVERY 5 MINUTES (ADJ):
- a. OA DB TEMPERATURE
- b. OA WB TEMPERATURE
- c. SYSTEM CHILLED WATER SUPPLY TEMPERATURE SET POINT d. CHILLED WATER SUPPLY TEMPERATURE
- e. CHILLED WATER RETURN TEMPERATURE f. CHILLER STATUS
- g. CHILLED WATER PUMP STATUS'S

B. CHILLED WATER PRIMARY PUMP SEQUENCE

- 1. PRIMARY CHILLED WATER PUMP <u>PCHP-1A</u> SHALL START AND STOP WHEN AIR COOLED CHILLER <u>CH-1A</u> IS COMMANDED ON AND OFF RESPECTIVELY. <u>PCHP-1B</u> & <u>CH-1B</u> AND <u>PCHP-2</u> & <u>CH-2</u>
- 2. IN AUTOMATIC OR MANUAL MODE OF OPERATION, WHEN $\underline{\text{CH}-1A}$ IS COMMANDED ON EITHER LOCALLY AT THE <u>CWPC</u> OR THE BMS VIA THE <u>CWPC</u> COMMUNICATION INTERFACE <u>PCHP-1A</u> SHALL START AT LOW SPEED VIA ITS VFD. ONCE CHILLED WATER FLOW IS VERIFIED VIA ITS DIFFERENTIAL PRESSURE SWITCH <u>DP-1</u> THE VFD SHALL MODULATE FLOW AS REQUIRED TO OBTAIN AND MAINTAIN DIFFERENTIAL PRESSURE SET POINT FOR CH-1A AS SENSED VIA DP-6 TO ESTABLISH CHILLED WATER FLOW RATE THROUGH THE CHILLER. ONCE FLOW RATE IS ESTABLISHED AN ENABLE SIGNAL SHALL BE SENT TO THE CHILLER CONTROL PANEL CHCP-1A. WHEN CH-1A IS COMMANDED OFF EITHER LOCALLY OR VIA THE BMS PCHP-1 SHALL BE COMMANDED OFF AFTER A FIVE (5) MINUTE (ADJ) DELAY. PCHP-1B & <u>PCHP-2</u> SHALL OPERATE SIMILAR WITH $\underline{CH-1B}$ & $\underline{CH-2}$ RESPECTIVELY.
- 3. A FAILURE OF ANY PRIMARY CHILLED WATER PUMP SHALL GENERATE AN ALARM TO THE BMS.

C. SECONDARY CHILLED WATER PUMP SEQUENCE

- 1. SECONDARY CHILLED WATER PUMP <u>SCHP-2</u> IS REDUNDANT AND SHALL BE PROGRAMMED FOR LEAD/LAG OPERATION WITH <u>SCHP-1</u>. LEAD/LAG PUMP SHALL BE ROTATED ON A BI-WEEKLY BASIS FOR EQUAL RUN TIME. IF EITHER OF THE TWO LEAD PUMPS FAIL OR FAIL TO START AS SENSED BY ITS DIFFERENTIAL PRESSURE SENSOR, THE REDUNADANT PUMP SHALL AUTOMATICALLY START AND RUN CONTINUOUSLY. A FAILURE OF ANY SECONDARY CHILLED WATER PUMP <u>SCHP-1</u>, <u>SCHP-2</u> OR <u>SCHP-3</u> AS SENSED BY THEIR RESPECTIVE DIFFERENTIAL PRESSURE SENSORS SHALL BE ALARMED
- 2. OF THE TWO CHILLED WATER PUMPS <u>SCHP-1</u> OR <u>SCHP-2</u> SHALL OPERATE WITH THE SECOND PUMP
- 3. THE LEAD PUMP SHALL START AT LOW SPEED AND VFD SHALL MODULATE PUMP SPEED TO MAINTAIN THE DOWNSTREAM DIFFERENTIAL PRESSURE SET POINT (ADJ) AS SENSED BY DIFFERENTIAL PRESSURE SENSOR DP-SCH. AN INCREASE IN DIFFERENTIAL PRESSURE SHALL CAUSE THE VFD TO SLOW DOWN AND A FALL IN DIFFERENTIAL PRESSURE SHALL CAUSE THE VFD TO SPEED UP. THE BMS SHALL MONITOR PRESSURE INDEPENDENT CHILLED WATER COIL CONTROL VALVES IN 5 MINUTE INTERVALS (ADJ) AND RESET THE DIFFERENTIAL SET POINT SUCH THAT THE CHILLED WATER CONTROL VALVE WITH THE MOST DEMAND IS OPEN BETWEEN 60% AND 65% (ADJ).
- 4. WHEN THE LEAD SECONDARY CHILLED WATER PUMP HAS BEEN OPERATING AT 90% (685 GPM) (ADJ) FLOW RATE AS SENSED BY FLOW METER FM-1 FOR 10 MINUTES (ADJ) THE LAG PUMP SHALL START. THE LAG PUMP SHALL START AT SLOW SPEED AND SLOWLY RAMP UP WHILE THE LEAD PUMP SIMULTANEOUSLY SLOWLY RAMPS DOWN UNTIL BOTH PUMPS ARE OPERATING AT THE SAME SPEED. PUMPS IN PARALLEL SHALL MODULATE TO MAINTAIN THE SYSTEM DIFFERENTIAL SET POINT. WHEN BOTH PUMPS ARE OPERATING AT 45% (340 GPM EACH OR 680 GPM TOTAL) (ADJ) FOR 10 MINUTES (ADJ) AS SENSED BY FLOW METER $\underline{\mathsf{FM}}-1$ THE LAG PUMP SHALL SHUT DOWN AND THE LEAD PUMP SHALL MODULATE TO MAINTAIN SYSTEM DIFFERENTIAL SET POINT.
- 5. AUTOMATIC BYPASS CONTROL VALVE <u>BCV-1</u> SHALL MODULATE OPEN AS REQUIRED TO MAINTAIN A MINIMUM FLOW RATE OF 255 GPM (ADJ) AS SENSED BY FLOW METER FM-1 TO PROTECT THE SECONDARY CHILLED WATER PUMP FROM DEAD HEAD.
- 6. WHEN ALL CHILLED WATER AUTOMATIC COIL CONTROL VALVES HAVE BEEN CLOSED FOR 60 MINUTES (ADJ) SECONDARY CHILLED WATER PUMPS SHALL SHUT DOWN.

D. CHILLER START SEQUENCE

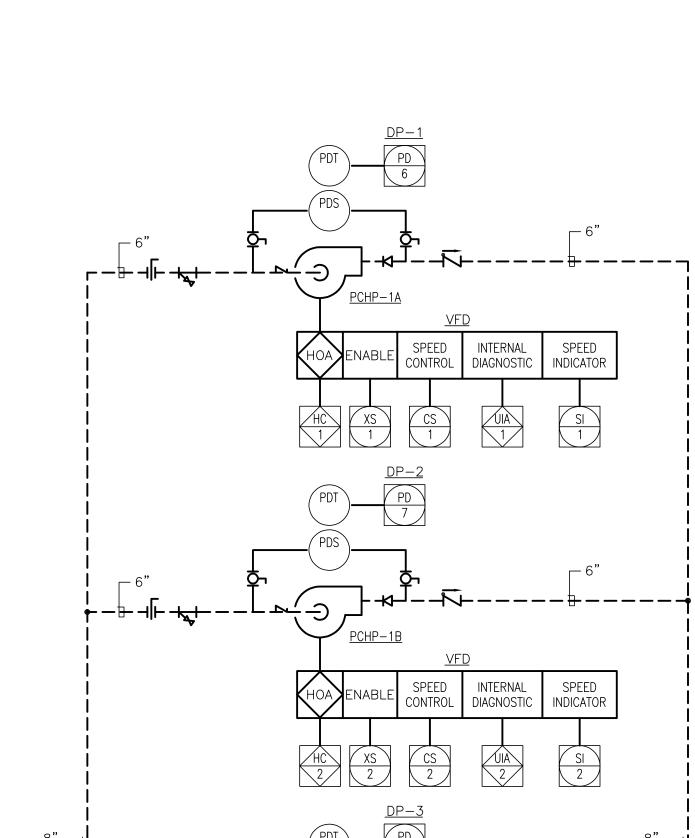
- 1. DURING AUTOMATIC OR MANUAL MODES OF OPERATION, THE BMS VIA THE CWCP COMMUNICATION INTERFACE SHALL SELECT CHILLER CH-1A, CH-1B OR CH-2 AS LEAD CHILLER BASED ON TOTAL RUN TIME. THE CHILLER WITH LOWER TOTAL RUN TIME SHALL BE SELECTED AS LEAD CHILLER. THE CORRESPONDING LEAD PRIMARY CHILLED WATER PUMP SHALL START AS DESCRIBED. IF DURING STARTING SEQUENCE, ANY LEAD EQUIPMENT FAILS TO RUN, LAG EQUIPMENT SHALL BECOME LEAD AND AN ALARM SHALL SOUND AT THE BMS AND THE LAG CHILLER AND CORRESPONDING LAG PRIMARY CHILLED WATER PUMP SHALL START.
- 2. THE CHILLED WATER SYSTEM SHALL BE ENABLED EITHER LOCALLY AT THE CWPC OR VIA THE BMS. ONCE ENABLED THE CHILLER START SEQUENCE SHALL BE INITIATED WHEN ANY ONE OF THE CHILLED WATER COIL AUTOMATIC FLOW CONTROL VALVES IS OPENED UPON A CALL FOR CHILLED WATER.
- 3. WHEN CHILLED WATER FLOWS HAVE BEEN ESTABLISHED AND CORRESPONDING ENABLE SIGNALS HAVE BEEN RECEIVED BY THE CHILLER, THE CHILLER SHALL START AND STAGE TO MAINTAIN A BMS SELECTED AND OPERATOR VERIFIED DISCHARGE TEMPERATURE OF 42F (ADJ.) VIA THE <u>CWCP</u> COMMUNICATION INTERFACE AS SENSED BY CORRESPONDING CHILLER LEAVING WATER TEMPERATURE SENSOR $\underline{\mathsf{TT}}-1$, $\underline{\mathsf{TT}}-2$ OR $\underline{\mathsf{TT}}-3$.
- 4. CHILLER START IS INHIBITED IF A FAULT CONDITION EXISTS AND IS INDICATED ON THE BMS VIA THE <u>CWPC</u>. THE CONDITION SHALL BE ENUNCIATED WHEN THE UNIT RESTART INHIBIT TIMER IS ACTIVATED BY THE CWCP. THE CWCP SHALL INDICATE THE AMOUNT OF TIME REQUIRED BEFORE ANOTHER START CAN BE ATTEMPTED ON THE ASSOCIATED CHILLER. ONCE THE RESTART INHIBIT IS CLEARED, THE CHILLER MAY START.
- 5. ANY FAILURE TO COMPLETE A SUCCESSFUL START SHALL CAUSE THE CHILLER TO ENTER A SHUTDOWN MODE AND A DIAGNOSTIC SHALL BE DISPLAYED DESCRIBING THE REASON FOR FAILURE, TIME, AND DATE OF FAILURE. UPON FAILURE OF THE LEAD CHILLER THE LAG CHILLER SHALL BE COMMANDED ON. LEAD CHILLED WATER DISTRIBUTION PUMP AND LEAD CONDENSER WATER PUMP SHALL SHUT DOWN UNDER THEIR RESPECTIVE SEQUENCES AND LAG CHILLED WATER DISTRIBUTION PUMP AND LAG CONDENSER WATER PUMP SHALL START. ONCE ONCE CHILLED WATER FLOW TO THE LAG CHILLER HAS BEEN PROVEN VIA ITS CHILLED WATER PRESSURE DIFFERENTIAL SWITCH ($\underline{DP-1}$ OR $\underline{DP-2}$) AND CONDENSER WATER FLOW HAS BEEN ESTABLISHED AS DETERMINED BY THE LAG CHILLER CONDENSER WATER FLOW DIFFERENTIAL PRESSURE SWITCH A START SIGNAL SHALL BE SENT TO THE LAG CHILLER AND THE LAG CHILLER SHALL START.
- 6. WITH A SUCCESSFUL UNIT START CHILLER CONTROLS SHALL MAINTAIN THE ADJUSTABLE CHILLED WATER SET POINT TEMPERATURE. THE BMS WILL DISPLAY A "UNIT RUNNING"

- 1. DURING NORMAL OPERATION IF THE LEAD CHILLER IS OPERATING AT 85% PART LOAD (ADJ) OR MORE FOR A PERIOD OF 20 MINUTES (ADJ) THE LAG CHILLER SHALL BE ENABLED AND THE LAG PRIMARY CHILLED WATER PUMP SHALL START. ONCE CHILLED WATER FLOW IS ESTABLISHED THE LAG CHILLER SHALL START. THE LEAD AND LAG CHILLER SHALL LOAD EQUALLY TO MAINTAIN LWT SET POINT AS SENSED BY TEMPERATURE TRANSISTORS $\Pi-1$, $\Pi-2$ and or $\Pi-3$. When both chillers are operating at 85% PART LOAD (ADJ) OR MORE FOR A PERIOD OF 20 MINUTES (ADJ) THE REMAINING THIRD LAG CHILLER SHALL BE ENABLED AND ITS CORRESPONDING PRIMARY CHILLED WATER PUMP SHALL START. ONCE CHILLED WATER FLOW IS ESTABLISHED THE REMAINING LAG CHILLER SHALL START. ALL CHILLERS SHALL LOAD EQUALLY TO MAINTAIN LWT SET POINT AS SENSED BY TEMPERATURE TRANSMITTERS $\underline{\mathsf{TT}}-1$, $\underline{\mathsf{TT}}-2$ AND $\underline{\mathsf{TT}}-3$.
- 2. DURING OPERATION WHEN THE LEAD AND BOTH LAG CHILLERS ARE OPERATING AT 45% PART LOAD (ADJ) FOR A PERIOD OF 15 MINUTES (ADJ) THE THIRD LAG CHILLER SHALL BE COMMANDED TO SHUT DOWN. AFTER A 5 MINUTE DELAY (ADJ) THIRD LAG CHILLED WATER DISTRIBUTION PUMP SHALL BE DEENERGIZED. WHEN THE LEAD AND LAG CHILLERS ARE OPERATING AT 45% PART LOAD (ADJ) FOR A PERIOD OF 15 MINUTES (ADJ) THE LAG CHILLER SHALL BE COMMANDED TO SHUT DOWN.
- 3. THE FOLLOWING POINTS SHALL BE AVAILABLE VIA THE BMS THROUGH THE CWPC VIA COMMUNICATION INTERFACE:
- a. START / STOP b. NUMBER OF STARTS
- c. RUN TIME d. STATUS - BYPASS OR AUTOMATIC
- COMPRESSOR RUNNING INDICATION POWER - KW
- POWER AMPS GENERAL FAULT
- FAULT NO. 1 USER SELECTED FAULT NO. 2 - USER SELECTED 5 ADDITIONAL USER SELECTED POINTS.

E. CHILLER LOW LOAD CYCLE SEQUENCE

1. THE BMS SHALL MONITOR CHILLED WATER SUPPLY WATER TEMPERATURE VIA TEMPERATURE SENSOR/TRANSMITTOR TT-4 AND CHILLED WATER RETURN TEMPERATURE VIA TEMPERATURE SENSOR/TRANSMITTOR $\overline{\text{IT}-6}$. WHEN $\overline{\text{IT}-6}$ FALLS TO 2°F (ADJ) BELOW $\overline{\text{IT}-4}$ FOR ONE HOUR (ADJ) THE CHILLER SHALL BE DISABLED. LEAD CHILLED WATER PUMP SHALL REMAIN ON. WHEN $\overline{\text{IT}-7}$ RISES TO 52°F (ADJ) AND A TIME DELAY OF 90 MINUTES (ADJ) HAS BEEN MET, THE LEAD CHILLER SHALL RESTART.

F. CHILLER SHUT DOWN SEQUENCE


- 1. WHEN ALL AUTOMATIC CONTROL VALVES HAVE BEEN CLOSED FOR 120 MINUTES (ADJ) THE BMS SHALL SEND A SIGNAL TO DE-ENERGIZE THE CHILLER CONTROLS AND THE CHILLER SHALL SHUT DOWN UNDER ITS OWN SEQUENCE.
- 2. THE CHILLED WATER PLANT SHALL BE SHUT DOWN DURING HOURS DETERMINED BY OWNER GENERATED OPERATING SCHEDULE.
- 3. THE CHILLER SHALL SHUT DOWN WHEN THE REFRIGERANT LEAK DETECTION SYSTEM IS IN ALARM.
- 4. WHEN THE CHILLED WATER PLANT IS COMMANDED OFF BOTH LEAD/LAG CHILLERS SHALL BE POWERED OFF. AFTER A 5 MINUTE DELAY (ADJ) LEAD AND LAG CHILLED WATER PUMPS SHALL BE DE-ENERGIZED.

G. CHILLED WATER SYSTEM OPTIMIZATION

1. THE <u>CWCP</u> SHALL CALCULATE CURRENT CHILLED WATER SYSTEM LOAD AND DETERMINE THE MOST EFFICIENT CHILLER COMBINATION BASED ON CHILLER KW/TON AT CURRENT LOAD AND CORRESPONDING PRIMARY PUMPING KW. THE BMS SHALL INDICATE CURRENT KW/TON ON THE GRAPHICS.

H. GLOBAL DRY AND WET BULB TEMPERATURE SENSORS SYSTEM SEQUENCE OF OPERATION

- 1. GLOBAL OUTDOOR AIR DRY BULB TEMPERATURE SENSOR <u>OAT-1</u> SHOWN ON THIS DRAWING SHALL BE INCORPORATED WITH ALL SEQUENCES CONTAINED WITHIN THE CONTRACT
- 2. GLOBAL OUTDOOR AIR WET BULB TEMPERATURE SENSORS <u>OAH-1</u> & <u>OAH-2</u> SHOWN ON THIS DRAWING SHALL BE INCORPORATED WITH ALL SEQUENCES CONTAINED WITHIN THE CONTRACT DOCUMENTS. THE BMS SHALL AVERAGE THE RELATIVE HUMIDITY AS SENSED BY <u>OAH-1</u> & <u>OAH-2</u> FOR CONTROL PURPOSES. <u>OAH-1</u> & <u>OAH-2</u> SHALL BE DISPLAYED ON THE GRAPHICS ALONG WITH AVERAGED CONTROL VALUE. WHEN THE DIFFERENCE IN READINGS BETWEEN OAH-1 AND OAH-2 EXCEED 10% RH (ADJ) AN ALARM SHALL BE GENERATED TO THE BMS TO INFORM OWNER THAT SENSOR(S) ARE OUT OF CALIBRATION.

INTERNAL DIAGNOSTIC INDICATOR

DIAGNOSTIC

REDUCED PRESSURE BACK FLOW X" NPW -

PREVENTER

MECHANICAL | PLUMBING

CHEMICAL

FEED TANK

FILE DRAIN

NPUT/OUTPUT SUMMARY GENERAL **BINARY** SYSTEM POINT **APPARATUS** OR AREA POINT DESCRIPTION PRIMARY CHILLED WATER PUMPS (PCHP-1A, PCHP-1B AND PCHP-2) SECONDARY CHILLED WATER PUMPS (SCHP-1 AND SCHP-2) CHILLED WATER PUMP DIFFERENTIAL PRESSURE (DP-1, DP-2, DP-3, DP-4, AND DP-5) 6, 7, 8, 9, 10 1, 12, 13 | X | X | X | CHILLER (CH-1 AND CH-2)CHILLER DIFFERENTIAL PRESSURE (DP-7 AND DP-8) X | 5 | X | X | X | 14, 15, 16 7, 18, 19, 20, 21 EMPERATURE (TT-1, TT-2, TT-3, TT-4, AND TT-5) BYPASS AUTOMATIC CONTROL VALVE (BCV-1) FLOW METER (FM-1)X | 5 | X | X | X | CHILLED WATER SYSTEM DIFFERENTIAL PRESSURE (DP-SCH)

DIAGNOSTIC (WB & %RH)

OUTDOOR AIR TEMPERATURE (OAT)

UTDOOR AIR HUMIDITY/WB TEMP (OAH)

(WB & %RH)

SPEED

CONTROL CONTROL INTERNAL INTERNAL DIAGNOSTIC DIAGNOSTIC SPEED INDICATOR INDICATOR

8" (BYPASS) ー

╌┯╢╟╂╌╬┼╬╼╟┯╾╼╼╼╼╼╼╼╼╼┷╼╼╼┼

reviewed by: <u>ALM</u> DATE: <u>07-19-19</u> PROJECT NO.: <u>1808</u>

 \equiv

+

<u>DP-SCH</u>

Architecture

ordon E. Johnson,

Reproduction or publication of this document is not permitted without the expressed consent of

8720 Red Oak Blvd, Suite 370

Charlotte, NC 28217

P 704 909 6612

NC license No: C-1126

RMF Project No: 2153223 F0

 \sim

+

 \Box

 \Box

S

+

en

0

pr

0

 \vdash

SHEET NUMBER

REVISIONS

HEATING HOT WATER SYSTEM SEQUENCE OF OPERATION:

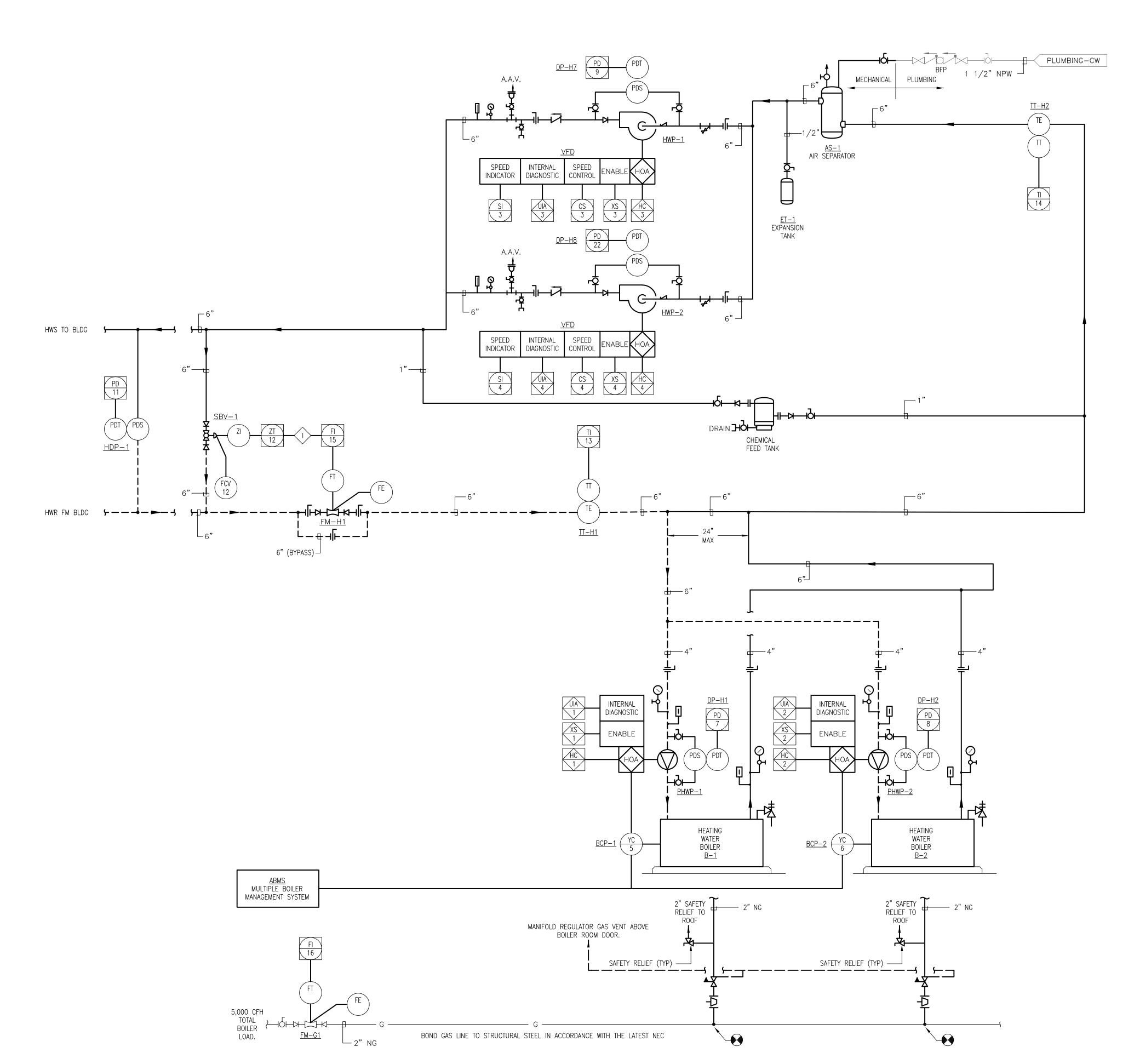
A. GENERAL

- 1. THE SEQUENCE DESCRIBES THE GENERAL INTENT OF THE CONTROL SYSTEM. PROVIDE ALL DEVICES, EQUIPMENT, AND WIRING AS REQUIRED TO PERFORM THE
- 2. UNLESS OTHERWISE NOTED, SIZE ALL AUTOMATIC CONTROL VALVES FOR MAXIMUM TEN (10) FEET WATER PRESSURE DROP AT MAXIMUM DESIGN FLOW RATE.
- 3. ALL PUMPS SHALL BE PROVIDED WITH DIFFERENTIAL PRESSURE SENSOR INSTALLED AROUND THE PUMP. SENSORS SHALL PROVIDE STATUS FOR PUMP OPERATION.
- 4. ALL TEMPERATURE, PRESSURE, AND TIME SET POINTS SHALL BE FULLY ADJUSTABLE FROM THE BUILDING MANAGEMENT SYSTEM (BMS). PROVIDE ALL HARDWARE, SOFTWARE, DEVICES, EQUIPMENT, AND WIRING AS REQUIRED TO INTERFACE WITH THE BMS.
- 5. REFER TO INPUT/OUTPUT SUMMARY SCHEDULE FOR ADDITIONAL CONTROL ITEMS NOT DESCRIBED IN THE SEQUENCES. INPUT/OUTPUT SUMMARY ARE MINIMUM REQUIREMENTS, PROVIDE ALL REQUIRED POINTS FOR COMPLETE OPERATION OF THE SYSTEM.
- 6. THE CONTROL CONTRACTOR SHALL PREPARE AND SUBMIT FOR APPROVAL A COMPOSITE CONTROL AND INTERLOCK WIRING DIAGRAM DEPICTING THE HEATING HOT WATER SYSTEM PROVIDED. THE CONTROL CONTRACTOR SHALL BE RESPONSIBLE FOR AND SHALL PROVIDE ALL CONTROL AND INTERLOCK WIRING FOR THE BOILER CONTROL PANEL (BCP) AND COMMUNICATION MODULE PROVIDED BY THE BOILER MANUFACTURER. DIAGRAMS SHALL CLEARLY SHOW HOW BOILER CONTROLS AND OTHER DEVICES WILL INTERFACED WITH THE CONTROL SYSTEM.
- 7. START/STOP CONTROL OF BOILER(S) <u>B-1</u> AND <u>B-2</u> AND CORRESPONDING HEATING HOT WATER PRIMARY PUMPS (<u>PHWP-1</u> AND <u>PHWP-2</u>) SHALL BE PROVIDED THROUGH THE MULTIPLE BOILER MANAGEMENT SYSTEM (<u>ABMS</u>) PROVIDED BY THE BOILER MANUFACTURER VIA CORRESPONDING FACTORY BOILER LOCAL CONTROLLER (<u>BCP-1</u> AND <u>BCP-2</u>) PROVIDED WITH EACH BOILER. THE <u>ABMS</u> THROUGH EACH <u>BCP</u> SHALL CONTROL THE BOILER AND ITS INTEGRAL START/STOP/SAFETY FUNCTIONS, STAGING AND LEAD LAG OPERATIONS. THE <u>ABMS</u> THROUGH THE BMS SHALL PROVIDE ALL STATUS AND ALARM MONITORING FOR EACH SYSTEM COMPONENT AND ALSO INDICATE BOILER DIAGNOSTIC. START/STOP SETTINGS FOR VARIOUS SYSTEM COMPONENTS SHALL BE PERFORMED MANUALLY THROUGH A HAND, OFF, AUTO SWITCH OR BY THE <u>BCP</u> AND BMS AS OUTLINED IN THE CONTRACT DOCUMENTS. HEATING HOT WATER SECONDARY PUMPS <u>HWP-1</u> & <u>HWP-2</u> SHALL BE CONTROLLED EITHER LOCALLY OR THROUGH THE BMS.
- 8. THE HEATING HOT WATER SYSTEM SHALL HAVE TWO BASIC OPERATIONAL MODES FOR THE HEATING HOT WATER PLANT: AUTOMATIC AND MANUAL. IN AUTOMATIC MODE, THE BMS SHALL AUTOMATICALLY SEND START SIGNAL TO ABMS, PUMPS, ETC. ACCORDING TO THE SEQUENCES DESCRIBED HEREIN. IN MANUAL MODE THE BMS SHALL PROMPT THE OPERATOR TO START A BOILER, PUMPS, ETC IN ACCORDANCE WITH THE SEQUENCES DESCRIBED HEREIN.

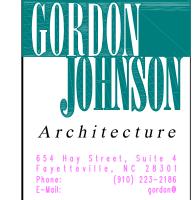
B. BOILER CONTROL:

- 1. THE BOILERS <u>B-1</u> AND <u>B-2</u> SHALL OPERATE VIA ITS FACTORY PROVIDED CONTROLLER, <u>BCP-1</u> AND <u>BCP-2</u>. WHEN A BOILER IS COMMANDED ON THE CORRESPONDING BOILER <u>BCP</u> SHALL START ITS PRIMARY CIRCULATING PUMP <u>PHWP</u>. THE <u>ABMS</u> SHALL SEQUENCE BOILERS FOR LEAD-LAG OPERATION AND SHALL STAGE BOILERS FOR MAXIMUM EFFICIENCY.
- 2. BOILER SHALL BE CONTROLLED LOCALLY BY "START-STOP" SWITCH OR VIA THE BMS. START-STOP SWITCH SHALL ALSO BE USED AS AN EMERGENCY SHUT-OFF SWITCH AND THEREFORE SHALL BE LOCATED AT THE BOILER ROOM ENTRANCE. WHEN START-STOP SWITCH IS IN THE "STOP" POSITION ALL BOILERS AND CORRESPONDING PRIMARY CIRCULATING PUMPS SHALL BE DE-ENERGIZED AND ALL CONTROLS SHALL BE IN THEIR NORMALLY CLOSED POSITION.
- 3. WHEN START-STOP SWITCH IS IN THE START POSITION AND THE BMS IS CALLING FOR BOILER OPERATION THE LEAD BOILER CIRCULATION PUMP SHALL START. WHEN FLOW HAS BEEN PROVEN VIA THE BOILER PROVIDED FLOW SENSOR ASSOCIATED WITH THE CORRESPONDING BOILER THE BOILER SHALL BE FIRED THROUGH THE BOILER CONTROL SYSTEM TO MAINTAIN A SUPPLY WATER TEMPERATURE OF 140°F (ADJ) AS MEASURED FROM TEMPERATURE SENSOR TT-2. IF LEAD BOILER CIRCULATION PUMP OR LEAD BOILER FAILS TO START AN ALARM SHALL BE GENERATED AND THE LAG BOILER RECIRCULATION PUMP AND LAG BOILER SHALL START.
- 4. LOSS OF FLOW THROUGH THE BOILER SHALL DE-ENERGIZE THE BOILER. THE BOILER CONTROL SYSTEM SHALL PROVIDE ALL OPERATING FUNCTIONS, SAFETY PROVISIONS, CONTROL ANNUNCIATION, AND BOILER DIAGNOSTICS. THE BOILER CONTROL SYSTEM SHALL INTERFACE WITH THE BMS THROUGH A COMMUNICATION MODULE. ALL SAFETY ALARMS, CONTROL ANNUNCIATIONS, AND BOILER DIAGNOSTICS PROVIDED BY THE BOILER CONTROL SYSTEM SHALL BE INDICATED ON THE BMS.
- 5. TEMPERATURE SENSORS TT-1 AND TT-2 IN HVAC HEATING HOT WATER PIPING SHALL PROVIDE CONTINUOUS TEMPERATURE INDICATION ON THE BMS.
- 6. IF START-STOP SWITCH IS SWITCHED TO THE STOP POSITION OR THE BMS IS TERMINATING OPERATION OF THE BOILER THE BOILER CONTROL SYSTEM SHALL DE-ENERGIZE THE BOILER IN THE PROPER SEQUENCE.
- 7. THE <u>ABMS</u> SHALL DETERMINE THE MOST EFFICIENT BOILER(S) FIRING OPERATION AND SHALL ENABLE AND DISABLE BOILERS AS REQUIRED. BOILER AND CORRESPONDING HEATING HOT WATER PRIMARY PUMP STATUS SHALL BE INDICATED ON THE BMS.

C. HEATING HOT WATER SYSTEM SECONDARY DISTRIBUTION PUMP OPERATION:


- 1. HVAC HEATING HOT WATER SECONDARY DISTRIBUTION PUMPS <u>HWP-1</u> AND <u>HWP-2</u> SHALL BE STARTED MANUALLY OR THROUGH THE BMS. <u>HWP-1</u> AND <u>HWP-2</u> ARE REDUNDANT AND SHALL BE PROGRAMMED FOR LEAD/LAG OPERATION. IF THE LEAD PUMP FAILS OR FAILS TO START AS SENSED BY ITS DIFFERENTIAL PRESSURE SENSOR, THE LAG PUMP SHALL AUTOMATICALLY START AND RUN CONTINUOUSLY. A FAILURE OF ANY DISTRIBUTION PUMP <u>HWP-1</u> AND <u>HWP-2</u> AS SENSED BY THEIR RESPECTIVE DIFFERENTIAL PRESSURE SENSORS SHALL BE ALARMED ON THE BMS.
- 3. THE BAS SHALL SHALL MONITOR ALL HEATING HOT WATER CONTROL VALVES IN 5 MINUTE INTERVALS (ADJ) AND RESET THE DIFFERENTIAL SET POINT SUCH THAT THE HEATING HOT WATER CONTROL VALVE WITH THE MOST DEMAND IS OPEN BETWEEN 80% AND 85% OPEN (ADJ). LOGIC SHALL ALLOW REMOVAL OF ANY HEATING CONTROL VALVE FROM THE DEMAND CALCULATION TO ACCOUNT FOR PROBLEM AREAS.
- 4. AUTOMATIC BYPASS VALVE <u>SBV-1</u> SHALL MODULATE OPEN WHEN SYSTEM FLOW RATE AS SENSED BY FLOW METER <u>FM-H1</u> FALLS BELOW 195 GPM (ADJ) AND SHALL REMAIN OPEN UNTIL FLOW RATE INCREASES TO 210 GPM (ADJ) AT WHICH TIME <u>SBV-1</u> SHALL CLOSE.

D. BOILER FUEL SYSTEMS:


2. THE BOILERS MANAGEMENT CONTROL SYSTEM SHALL CONTROL ALL FUNCTIONS OF MANUFACTURER SUPPLIED GAS TRAIN. GAS FLOW METER <u>FM-G1</u> SHALL MEASURE AND TOTALIZE GAS CONSUMPTION VIA LON OR BACNET INTERFACE TO THE BMS.

E. BOILER EMERGENCY SHUT DOWN PROVISION

1. WHEN THE EMERGENCY STOP BUTTON IS ACTIVATED, ALL BOILERS, PRIMARY PUMPS AND SECONDARY PUMPS SHALL SHUTDOWN. MANUAL RESET EITHER LOCALLY OR VIA THE BMS SHALL BE REQUIRED.

		INPUTS OUTPUTS SYSTEM FEATURES
	SYSTEM	ANALOG MEASURED CALC. BINARY BINARY ANALOG ALARMS PROGRAMS GENERAL
POINT NO.	APPARATUS OR AREA POINT DESCRIPTION	SPEED (FREQ) VOLTS AMPS KW VALVE/DAMPER POSITION TEMPERATURE DIFFERENTIAL PRESSURE INLET TEMPERATURE OUTLET TEMPERATURE GPM ENTHALPY STATUS (DIFF. PRESS.) LOW TEMP LIMIT HIGH HUM. LIMIT STATUS (AMPS) ENABLE—DISABLE DAMPER POSITION VALVE POSITION VALVE POSITION UNITE TIME SCHEDULING ALTERNATE TIME SCHEDULING ALTERNATE TIME SCHEDULING ALARM(S) TREND INTERVAL (MIN) RUNN TIME TOTALIZE SHOWN ON GRAPHIC
1, 2	HOT WATER PRIMARY PUMPS (PHWP-1 & PHWP-2)	
3, 4	HOT WATER SECONDARY PUMPS (HWP-1 & HWP-2)	X X X X
5, 6	BOILER CONTROL PANEL (BCP-1 & BCP-2)	
7, 8, 9, 10	DIFFERENTIAL PRESSURE SENSOR (DP-H1, DP-H2, DP-H7, AND DP-H8)	X
1	SECONDARY DIFFERENTIAL PRESSURE SENSOR (HDP-1)	X
2	SECONDARY BYPASS VALVE (SBV-1)	X
3, 14	TEMPERATURE TRANSMITTER (TT-H1, TT-H2)	X
15, 16	FLOW METER (FM-H1, FM-G1)	5 X X

Architecture

654 Hay Street, Suite 4
Fayetteville, NC 28301
Phone: (910) 223-2186
E-Mail: gordon@
gordonjohnsonarchitecture.com
@ Copyright 2019
Gordon E. Johnson, AIA
Reproduction or publication of this document is not permitted without the expressed consent of the above.

Legal Disclaimer: This document is intended to comply with the requirements of the American with Dischitties Act (NAA). However, Architects and

- Airline Terminal Improvements Par HVAC SCHEMATIC DIAGRAM - HEATING WATE

 \sim

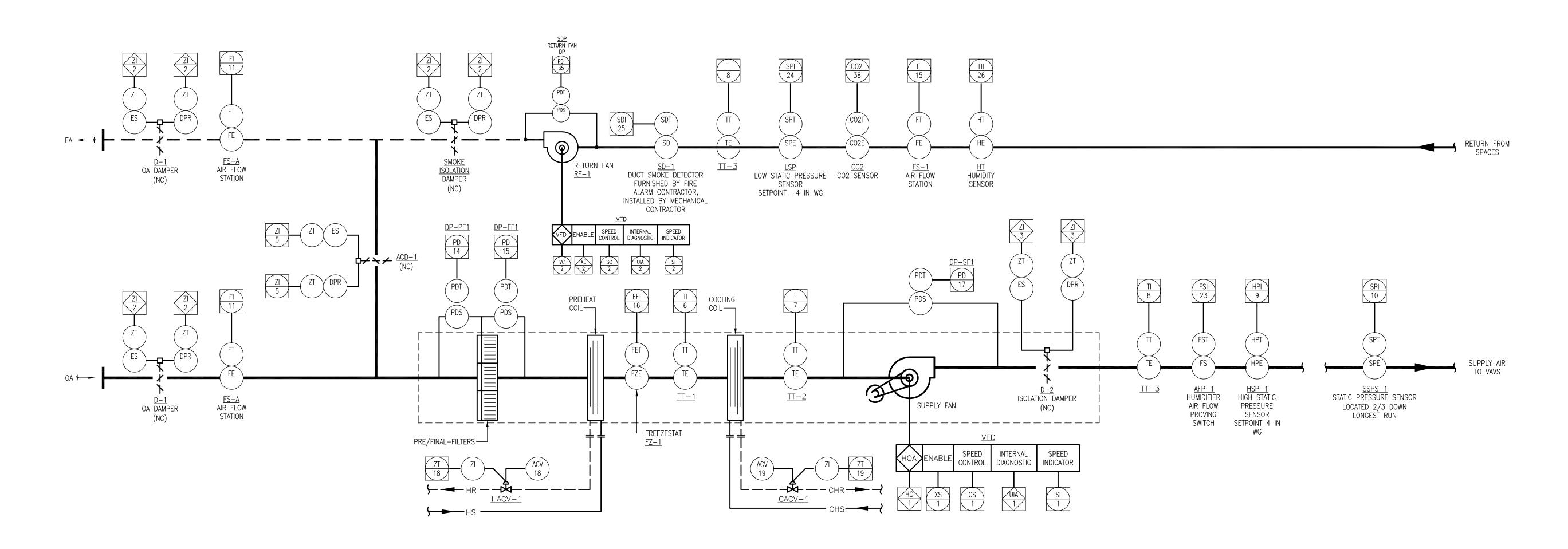
+

rport Road

 \bigcirc

 \triangleleft

ON


<u>.</u>

 \simeq

 \equiv

DRAWN BY: BMC REVIEWED BY: ALM DATE: 07-19-19 PROJECT NO.: 1808

REVISIONS

TYPICAL AIR HANDLING UNIT SEQUENCE OF OPERATION (TYP OF 2)

- 1. SEE PLANS FOR LOCATIONS OF ALL ROOM THERMOSTATS, DAMPERS, VALVES, AND EQUIPMENT; WHERE SUCH DEVICES ARE NOT INDICATED, BUT ARE REQUIRED BY THE SEQUENCES, THEY SHALL BE PROVIDED AND LOCATED IN THE FIELD BY THE ENGINEER.
- 2. ADJUSTABLE FREEZESTAT SHALL BE PROVIDED FOR PREHEAT COIL AND SHALL DE-ENERGIZE THE AIR HANDLING SYSTEM WHEN THE ADJUSTABLE SET POINT OF THIRTY-FIVE (35) DEGREES FAHRENHEIT IS REACHED. WHEN FREEZESTAT SET POINT IS REACHED, OUTDOOR AIR DAMPERS SHALL FULLY CLOSE AND BE PROVEN CLOSED BY END SWITCH, HEATING COIL CONTROL VALVES SHALL OPEN TO 100% (ADJ), COOLING COIL CONTROL VALVE SHALL OPEN TO 50% (ADJ) OPEN, SUPPLY FANS SHALL BE DISABLED AND ALARM SHALL BE GENERATED TO THE BMS.
- 3. ALL TEMPERATURE, HUMIDITY, PRESSURE, AND TIME SET POINTS SHALL BE FULLY ADJUSTABLE FROM THE BMS.
- 4. THE SEQUENCES OUTLINED BELOW SHALL BE DESCRIBED AS AHU AND SHALL BE APPLICABLE TO AHU-1 AND AHU-2.
- 5. WHEN THE UNIT IS DE-ENERGIZED, SUPPLY FAN SHALL BE OFF. OUTSIDE DAMPER $\underline{D-1}$ AND SUPPLY ISOLATION DAMPER $\underline{D-2}$ SHALL BE CLOSED. AUTOMATIC CONTROL DAMPERS $\underline{ACD-1}$ SHALL BE OPEN, AUTOMATIC CONTROL DAMPER ACD-2 SHALL BE CLOSED, COOLING COIL CONTROL VALVE CACV-1 SHALL BE CLOSED AND HEATING COIL CONTROL VALVE HACV-1 SHALL MODULATE AS REQUIRED TO MAINTAIN 60° F (ADJ) AS SENSED BY TEMPERATURE SENSOR $\overline{11}-1$.
- 6. THE BMS SHALL AVERAGE THE RELATIVE HUMIDITY AS SENSED BY DUCT MOUNTED HUMIDITY SENSORS H-1A & H-1B FOR CONTROL PURPOSES. H-1A & H-1B SHALL BE DISPLAYED ON THE GRAPHICS ALONG WITH AVERAGED CONTROL VALUE. WHEN THE DIFFERENCE IN READINGS BETWEEN H-1A AND H-1B EXCEED 10% RH (ADJ) AN ALARM SHALL BE GENERATED TO THE BMS TO INFORM OWNER THAT SENSOR(S) ARE OUT OF CALIBRATION.

B. SUPPLY AIR TEMPERATURE RESET CONTROL:

1. DISCHARGE AIR TEMPERATURE SET POINT AS SENSED BY TEMPERATURE SENSOR TT-3 SHALL BE RESET BASED ON THE OUTDOOR AIR TEMPERATURE AS SENSED THROUGH THE GLOBAL OUTSIDE AIR TEMPERATURE TRANSMITTER (SEE CHILLED WATER SCHEMATIC). WHEN THE OA TEMPERATURE IS 45°F OR LESS (ADJ) THE DISCHARGE AIR TEMPERATURE SHALL BE 60°F (ADJ). WHEN OUTDOOR AIR TEMPERATURE IS 55°F (ADJ) OR GREATER DISCHARGE AIR TEMPERATURE SET POINT SHALL BE 55°F (ADJ). DISCHARGE AIR TEMPERATURE SHALL RESET LINEAR FROM 60°F (ADJ) TO 55°F (ADJ) BETWEEN OUTDOOR AIR TEMPERATURES >45°F (ADJ) AND <55°F (ADJ). COOLING COIL AUTOMATIC CONTROL VALVE AND HEATING COIL AUTOMATIC CONTROL VALVE SHALL MODULATE AS REQUIRED TO MAINTAIN SUPPLY AIR TEMPERATURE SET POINT AS SENSED BY TEMPERATURE SENSOR $\overline{11}-3$.

C. OA SYSTEM VENTILATION OPTIMIZATION:

- 1. THE AHU OUTDOOR AIR DAMPER SHALL BE CONTROLLED TO DELIVER REQUIRED OUTDOOR AIRFLOW AT ALL LOAD CONDITIONS. THE OUTDOOR AIRFLOW SET POINT SHALL BE DETERMINED PER THE OUTDOOR AIRFLOW CONTROL USING DYNAMIC RESET AND DEMAND CONTROLLED VENTILATION SEQUENCE.
- 2. WHEN THE SYSTEM(S) ARE IN OCCUPIED MODE AND NON-ECONOMIZER MODE THE OA SYSTEM VENTILATION OPTIMIZATION SEQUENCE SHALL BE INCORPORATED.
- 3. PRIOR TO FINAL SYSTEM ACCEPTANCE, A CONTRACTOR SHALL PROVIDE A TREND LOG OF ACTUAL SYSTEM OPERATION TO THE ENGINEER AND OWNER. OPERATING CONDITIONS TO BE LOGGED INCLUDE: HIGHEST ZONE OUTDOOR AIR FRACTION, TOTAL SYSTEM PRIMARY AIRFLOW, CALCULATED OUTDOOR AIRFLOW SET POINT FOR THE SYSTEM, AND THE ACTUAL MEASURED OUTDOOR AIRFLOW. THESE CONDITIONS MUST BE LOGGED AT 15-MINUTE INTERVALS OVER A TYPICAL 48-HOUR PERIOD.

D. SUPPLY FAN CONTROL:

- 1. WHEN AIR HANDLING UNIT IS COMMANDED ON EITHER LOCALLY OR VIA THE CCMS, ISOLATION SMOKE DAMPERS SID-1 AND SID-2 SHALL OPEN. ONCE SID-1 AND SID-2 ARE PROVEN OPEN BY THEIR RESPECTIVE END SWITCHES, RETURN FAN SHALL START AT MINIMUM SPEED (SEE RETURN FAN PARAGRAPH "E" FOR RETURN FAN OPERATION). ONCE RETURN FAN IS PROVEN ON VIA ITS DIFFERENTIAL PRESSURE SWITCH, SUPPLY FAN SHALL START AFTER A 30 SECOND DELAY (ADJ.) SUPPLY FAN VFD SHALL START AT LOW SPEED AND BE MODULATED TO MAINTAIN SUPPLY DUCT STATIC PRESSURE SET POINT AS SENSED BY <u>SSPS-1</u>.
- 2. SUPPLY FAN DISCHARGE DUCT STATIC PRESSURE SETPOINT SHALL BE RESET UPWARD BY 0.1 IN. W.C. (ADJ.), AT A FREQUENCY OF 15 MINUTES (ADJ.) UNTIL NO VAV DAMPER IS MORE THAN 85% OPEN (ADJ.) OR THE STATIC PRESSURE SETPOINT HAS RESET UPWARD TO THE SYSTEM MAXIMUM DUCT STATIC PRESSURE SETPOINT OF 3.0 IN. W.C. (ADJ) OR THE AHU VARIABLE-FREQUENCY DRIVE IS AT THE MAXIMUM SPEED
- 3. THE CONTROL BANDS, SETPOINT INCREMENT VALUES, SETPOINT DECREMENT VALUES AND ADJUSTMENT FREQUENCIES SHALL BE ADJUSTED TO MAINTAIN MAXIMUM STATIC PRESSURE OPTIMIZATION WITH STABLE SYSTEM
- 4. THE CCMS SHALL HAVE THE CAPABILITY TO ALLOW THE OPERATOR TO EXCLUDE "PROBLEM" ZONES THAT SHOULD NOT BE CONSIDERED WHEN DETERMINING THE OPTIMIZED SETPOINT.
- 5. THE CCMS SHALL ALSO READ THE STATUS OF THE SUPPLY AIR STATIC PRESSURE SENSOR AND DISPLAY THE ACTIVE DUCT STATIC PRESSURE READING ON THE STATUS SCREEN.
- 6. THE CCMS SHALL BE PROGRAMMED TO IDENTIFY, AND DISPLAY TO THE USER, THE VAV BOX THAT SERVES THE CRITICAL ZONE (THAT IS, THE ZONE WITH THE MOST WIDE-OPEN VAV DAMPER). THIS INFORMATION SHALL UPDATE DYNAMICALLY AS THE LOCATION OF THE CRITICAL ZONE CHANGES BASED ON BUILDING LOAD, AND DUCT STATIC PRESSURE SETPOINT OPTIMIZATION CONTROL.
- 7. DURING THE COMMISSIONING PROCESS, THE CONTROLS CONTRACTOR SHALL DEMONSTRATE THE PERFORMANCE OF FAN PRESSURE OPTIMIZATION.

E. RETURN FAN CONTROL:

1. RETURN FAN SHALL BE STARTED AT MINIMUM SPEED WHEN THE UNIT IS COMMANDED ON EITHER LOCALLY OR VIA THE CCMS. ONCE SUPPLY FAN IS PROVEN ON IN OCCUPIED MODE, RETURN FAN VIA AIR FLOW STATION FS-1 SHALL TRACK SUPPLY FAN AIR FLOW AS MEASURED BY AIR FLOW STATION FS-4. IN UNOCCUPIED MODE, RETURN FAN VIA AIRFLOW STATION FS-1 SHALL TRACK SUPPLY FAN AIR FLOW AS MEASURED BY AIR FLOW STATION FS-4. WHEN THE UNIT IS COMMANDED OFF EITHER LOCALLY OR VIA THE CCMS SUPPLY FAN SHALL STOP AND RETURN FAN SHALL STOP AFTER A 30 SECOND DELAY (ADJ).

F. ECONOMIZER:

1. WHEN OA TEMPERATURE FALLS BELOW 60°F (ADJ) AND ABOVE 55°F (ADJ) THE ECONOMIZER MODE SHALL BE ENABLED. IN ECONOMIZER MODE OA DAMPER D-1 SHALL BE OPEN TO ITS MAXIMUM PREDETERMINED POSITION. MIXED AIR DAMPER D-5 SHALL FULLY CLOSE AND RELIEF DAMPER D-2 SHALL FULLY OPEN. OTHERWISE THE UNIT SHALL OPERATE IN ITS NORMAL OPERATIONAL SEQUENCE. WHEN OA TEMPERATURE IS 55°F (ADJ) OR LESS AND GREATER THAN 45°F (ADJ) THE UNIT SHALL BE IN PARTIAL ECONOMIZER MODE. THE BMS SHALL OPEN OA DAMPER D-1 TO ITS MAXIMUM PREDETERMINED POSITION, MIXED AIR DAMPER $\underline{D-3}$ AND RELIEF DAMPER $\underline{D-2}$ IN UNISON TO MAINTAIN MIXED AIR TEMPERATURE OF 53°F (ADJ) AS DETERMINED BY TEMPERATURE SENSOR TT-3.

G. DEHUMIDIFICATION CONTROL:

1. THE AHU SHALL BE PLACED IN DE-HUMIDIFICATION MODE WHEN THE EXHAUST AIR DEW HUMIDITY AS SENSED BY H-1A & H-1B RISES ABOVE SET POINT OF 55% RH (ADJ). THE CHILLED WATER CONTROL VALVE CACV-1 SHALL BE OVERRIDDEN TO TO OBTAIN 53°F SUPPLY AIR TEMPERATURE (ADJ) AS SENSED BY TT-3. ONCE THE EXHAUST AIR HUMIDITY FALLS BELOW SET POINT CACV-1 SHALL RETURN TO NORMAL CONTROL. DEHUMIDIFICATION MODE SHALL BE DISABLED WHEN H-1A & H-1B ARE IN CALIBRATION ALARM.

H. SAFETIES

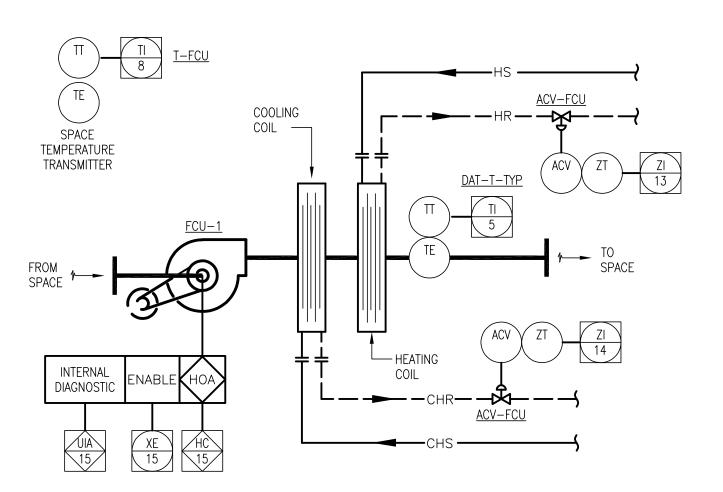
- 1. THE FOLLOWING SAFETIES SHALL DE-ENERGIZE THE SUPPLY AND RETURN FANS, CLOSE OUTSIDE AIR AND ISOLATION DAMPERS AND GENERATE AN ALARM TO THE BMS:
- a. FREEZESTAT SETPOINT 35°F (ADJ) b. SHUTDOWN SIGNAL FROM THE FIRE ALARM SYSTEM
- c. DISCHARGE HIGH STATIC PRESSURE SWITCH @ 4" WC (ADJ). d. RETURN AIR HIGH NEGATIVE PRESSURE SWITCH @ 4" WC NEG. (ADJ).
- e. FAN FAILURE. f. OA OR ISOLATION DAMPER END SWITCHES.
- 2. ALL SAFETIES REQUIRE MANUAL RESET EITHER LOCALLY OR VIA THE BMS.

I. ADDITIONAL ALARMS:

1. A DIFFERENTIAL PRESSURE SWITCH SHALL MONITOR FILTER LOADING AND GENERATE AN ALARM UPON ACTIVATION.

									INPU				_			Ol	JTPU	TS			SYS	TEM	FEAT	URE	.S					
		F					MFΔS	AN SURED	NALOG		_	CALC.		BINARY	/ E	BINAR'	Y Al	NALC)G		ALA	RMS		PRO	GRAM	/IS		GE'	NERA	ĄL
POINT NO.	SYSTEM APPARATUS OR AREA POINT DESCRIPTION	(0.00.)	SPEED (FREW)	AMPS	KW				RELATIVE HUMIDITY (DUCT) RELATIVE HIMIDITY (OLITHOOR AIR)	DAMPER POSITION			ENTHALPY	(785)	DAMPER POSITION (END SWITCH) FNARI F-DISARI F	DAMPER POSITION	VALVE POSITION	VALVE POSITION	FAN SPEED SSR STAGING	LOW TEMP LIMIT	HIGH/LOW HUM. LIMIT	HIGH PRESS LIMIT FREEZESTAT	SMOKE DETECTION	TIME SCHEDULING AI TERNATE	TIME DELAY START	AVERAGING	SCHEDULE AI APM/C)	TREND INTERVAL (MIN)	RUN TIME TOTALIZE	SHOWN ON GRAPHIC
1	SUPPLY FAN (VFD))	< X	X	X >	X	X	X			X	(X	-	x x	X	,			X					X		,	x x	(1	X	X X
2	OUTSIDE AIR DAMPER (D-1)									X				\	×		X							x		;	X	5	1	ХХ
3	SUPPLY ISOLATION DAMPERS (D-2)													\	×	X								x	\prod	;	X	5	1 ;	х х
4, 5	AUTOMATIC CONTROL DAMPERS (ACD-1, ACD-2)									X				>	×									x	\prod	>	X	5	;	х х
6, 7, 8	TEMPERATURE SENSOR (TT-1, TT-2, TT-3)					X																				>	X	5	;	х х
9	DUCT HIGH STATIC PRESSURE (HSP-1)							Х)	Х					X	. 1	;	х х
10	SUPPLY DUCT STATIC PRESSURE (SSPS-1)							Х																				1	;	ХХ
11, 12, 13	COMMON AIR FLOW STATION (FS-A, FS-B, FS-C))						Х					X																1	;	Х
14, 15	FILTER AIR DIFFERENTIAL PRESSURE (DP-PF1, DP-FF1)							X														Х					X		;	X
16	FREEZESTAT (FZ-1)																					Х					X		;	X
17	FAN DIFFERENTIAL PRESSURE (DP-SF1)							X														Х					X		[];	x
18, 19	AUTOMATIC CONTROL VALVE (HACV-1, CACV-1)										X							X											;	ХХ
20, 21	RETURN AIR HUMIDITY SENSOR (H-1A, H-1B)								X	(Х					X	ХХ	1];	ХХ
25	RETURN DUCT SMOKE DETECTOR (SD-1)																						Х				X			Х

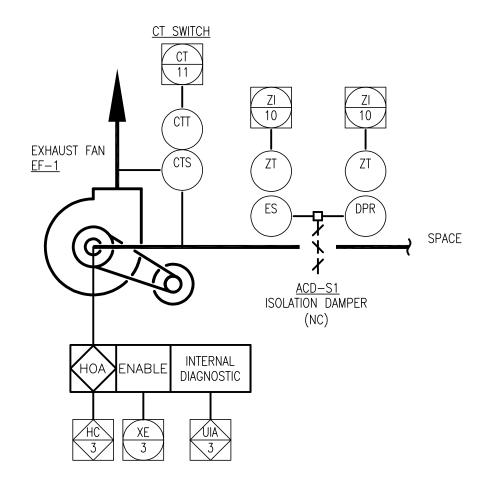
Architecture Copyright 20° Gordon É. Johnson, Reproduction or publication of this document is not permitted without the expressed consent of the above.


+ en 0 pr Ξ 0 \vdash \triangleleft \bigcirc \triangleleft ON . Δ \equiv **(D)** +)e

 \sim

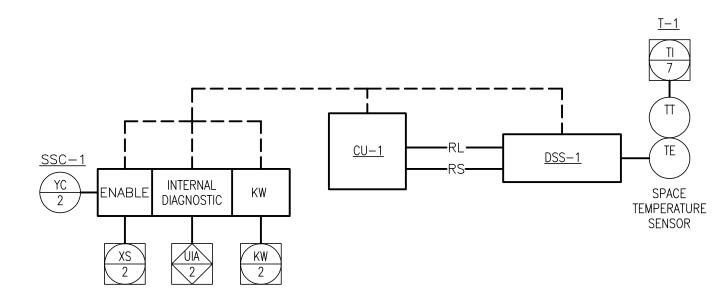
DRAWN BY: ____BMC____ REVIEWED BY: ALM DATE: <u>07–19–19</u> PROJECT NO.: <u>1808</u>

SHEET NUMBER


REVISIONS

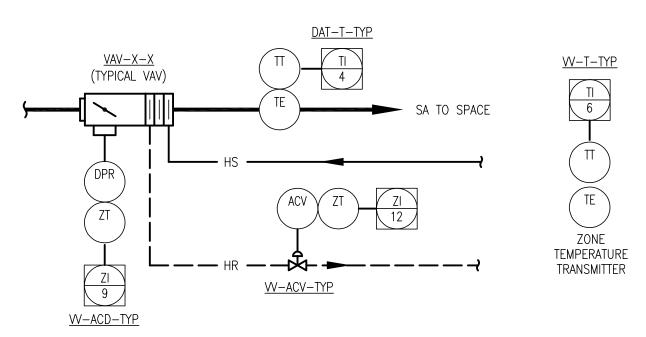
FAN COIL UNIT SEQUENCE OF OPERATION

GENERAL:


- A. SEE PLANS FOR LOCATIONS OF ALL DAMPERS AND EQUIPMENT; WHERE SUCH DEVICES ARE NOT INDICATED, BUT ARE REQUIRED BY THE SEQUENCES, THEY SHALL BE PROVIDED BY THE CONTRACTOR AND LOCATED IN THE FIELD BY THE ENGINEER.
- B. FAN COIL UNIT SHALL BE PROVIDED WITH HOA SWITCH. FAN SHALL BE OPERABLE LOCALLY OR VIA THE BMS.
- C. SUPPLY AIR FAN SHALL START AND COOLING COIL CONTROL VALVE <u>ACV-FCU</u> SHALL MODULATE AS REQUIRED TO MAINTAIN SPACE TEMPERATURE OF 75°F (ADJ) AS SENSED BY <u>T-FCU</u>. IF SPACE TEMPERATURE EXCEEDS 80°F (ADJ) AN ALARM SHALL BE SENT TO THE BMS.
- D. UNIT SHALL OPERATE 24/7/365.

TYPICAL EXHAUST FAN SYSTEM SEQUENCE OF OPERATION

GENERAL:


- A. SEE PLANS FOR LOCATIONS OF ALL DEVICES AND EQUIPMENT; WHERE SUCH DEVICES ARE NOT INDICATED, BUT ARE REQUIRED BY THE SEQUENCES, THEY SHALL BE PROVIDED BY CONTRACTOR AND LOCATED IN THE FIELD BY THE ENGINEER. EXHAUST FANS SHALL SHUT DOWN UPON FIRE ALARM.
- B. <u>ACD-S1</u> OPERATION: AUTOMATIC CONTROL DAMPER SHALL OPEN WHEN CORRESPONDING EXHAUST FAN(S) ARE ENABLED AND SHALL CLOSE WHEN CORRESPONDING EXHAUST FAN(S) ARE DISABLED. IF ANY AUTOMATIC CONTROL DAMPER FAILS TO OPEN OR CLOSE AS DETERMINED BY THEIR RESPECTIVE END SWITCHES AN ALARM SHALL BE SENT TO THE BMS.
- C. EXHAUST FANS SHALL BE PROVIDED WITH HOA CONTROL AND SHALL BE STARTED LOCALLY OR VIA THE BMS. WHEN HOA SWITCH IS IN OFF, FAN SHALL BE OFF AND BMS CONTROL SHALL BE DISABLED. WHEN HOA SWITCH IS IN HAND THE FAN SHALL BE ON AND BMS CONTROL SHALL BE DISABLED. WHEN HOA SWITCH IS IN AUTO FAN SHALL OPERATE VIA BMS CONTROL.
- D. EXHAUST FANS SHALL BE ENABLED DURING OCCUPIED PERIODS AND DISABLED DURING UNOCCUPIED PERIODS BY THE BMS.

SPLIT SYSTEM CU-S1/DSS-1 SEQUENCE OF OPERATION

GENERAL:

- A. SEE PLANS FOR LOCATIONS OF ALL EQUIPMENT; WHERE SUCH DEVICES ARE NOT INDICATED, BUT ARE REQUIRED BY THE SEQUENCES, THEY SHALL BE PROVIDED BY THE CONTRACTOR AND LOCATED IN THE FIELD BY THE ENGINEER.
- B. UNIT SHALL SHALL BE PROVIDED WITH HOA SWITCH AND SHALL RUN CONTINUOUSLY 24/7/365. UNIT SHALL BE PROVIDED WITH FACTORY CONTROLLER (<u>SSC-1</u>) AND ROOM T-STAT. SYSTEM SHALL BE CONTROLLED VIA <u>SSC-1</u>. UNIT SHALL BE OPERABLE LOCALLY OR VIA THE BAS VIA COMMUNICATION INTERFACE WITH <u>SSC-1</u>.
- C. AN ALARM SHALL BE GENERATED TO THE BAS WHENEVER THE UNIT INTERNAL DIAGNOSTIC ALARMS.
- D. SPACE TEMPERATURE SHALL BE ADJUSTABLE EITHER LOCALLY OR VIA THE BMS THROUGH THE UNIT CONTROLLER <u>SSC-1</u>.
- E. COMPRESSOR <u>CU-1</u> SHALL MODULATE AS REQUIRED TO SATISFY <u>DSS-1</u> DEMAND. <u>DSS-1</u> SHALL CYCLE ON ONLY WHEN RESPECTIVE SPACE CALLS FOR COOLING AND SHALL BE OFF WHEN RESPECTIVE SPACE TEMPERATURE SET POINT OF 75°F (ADJ) IS SATISFIED. IF SPACE TEMPERATURE EXCEEDS 80°F (ADJ) AN ALARM SHALL BE SENT TO THE BMS.

TYPICAL TERMINAL UNIT (VAV) SEQUENCE OF OPERATION

GENERAL:

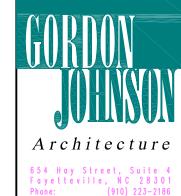
- A. SEE PLANS FOR LOCATIONS OF ALL DAMPERS AND EQUIPMENT; WHERE SUCH DEVICES ARE NOT INDICATED, BUT ARE REQUIRED BY THE SEQUENCES, THEY SHALL BE PROVIDED BY THE CONTRACTOR AND LOCATED IN THE FIELD BY THE FNGINFER
- B. EACH VAV ZONE SHALL BE PROVIDED WITH INDEPENDENT OCCUPANCY SCHEDULE (OCCUPIED/UNOCCUPIED/WARMUP).C. EACH VAV ZONE SHALL BE PROVIDED WITH INDEPENDENT THERMOSTAT SCHEDULE FOR OCCUPIED TEMPERATURE SET POINT, UNOCCUPIED (NIGHT SET BACK) TEMPERATURE SET POINT.

OCCUPIED MODE:

A. UPON A RISE IN SPACE TEMPERATURE THE VARIABLE VOLUME TERMINAL UNIT (VAV) SHALL MODULATE OPEN TO ITS MAXIMUM AIR FLOW SET POINT AS INDICATED ON THE SCHEDULES AS REQUIRED TO MAINTAIN THE ROOM TEMPERATURE SET POINT OF 75°F (ADJ). UPON A FALL IN SPACE TEMPERATURE THE VAV SHALL MODULATE CLOSED TO ITS MINIMUM AIR FLOW SETPOINT AS INDICATED ON THE SCHEDULES. IF THE VAV IS AT ITS MINIMUM AIR FLOW SET POINT AND SPACE TEMPERATURE CONTINUES TO FALL THE HEATING COIL AUTOMATIC CONTROL VALVE SHALL MODULATE OPEN TO MAINTAIN ROOM TEMPERATURE SET POINT OF 70°F (ADJ).

UNOCCUPIED MODE:

A. AIR HANDLING UNIT SERVING THE VAVS SHALL BE OFF DURING UNOCCUPIED MODE. IF ROOM TEMPERATURE RISES TO 80°F (ADJ) CORRESPONDING AIR HANDLING UNIT SHALL BE COMMANDED ON AND THE VAV SHALL MODULATE OPEN AS REQUIRED TO LOWER ROOM TEMPERATURE TO 75°F (ADJ). ONCE ROOM TEMPERATURE IS SATISFIED A SIGNAL SHALL BE SENT TO THE CORRESPONDING AIR HANDLING UNIT TO SHUT DOWN. IF ROOM TEMPERATURE FALLS TO 60°F (ADJ) CORRESPONDING AIR HANDLING UNIT SHALL BE COMMANDED ON AND THE VAV SHALL GO TO ITS MINIMUM AIR FLOW POSITION AS INDICATED ON THE SCHEDULES AND THE HEATING COIL AUTOMATIC CONTROL VALVE SHALL MODULATE OPEN AS REQUIRED TO RAISE ROOM TEMPERATURE TO 65°F (ADJ). ONCE ROOM TEMPERATURE IS SATISFIED A SIGNAL SHALL BE SENT TO CORRESPONDING AIR HANDLING UNIT TO SHUT DOWN.


MORNING WARM UP & COOL DOWN:

A. VAVS SHALL OPEN TO THEIR MAXIMUM POSITION DURING MORNING WARM UP AND COOL DOWN. REHEAT CONTROL VALVE SHALL MODULATE AS REQUIRED TO MEET INDIVIDUAL ROOM OCCUPIED TEMPERATURE SET POINT.

CO2 OVERRIDE:

A. FOR SPACES WITH WALL MOUNTED CO2 SENSORS, THE VAV AIRFLOW SHALL BE OVERRIDDEN TO MAINTAIN THE DESIGN CO2 SETPOINT.

INPUT/OUTPUT	SUMMARY																																				
										INF	PUTS										(OUTF	PUTS	Ò			SYST	TEM	FEA	TURE	ES.						司
						1.41	EAC!		ALOG	<u>}</u>			_	0.41	^		BII	NARY			BINA	.RY	ANA	4L00	;	Д	LAR	MS		PR()GRA	MS		GEN	NERA	٩L	
				T		<u>М</u> і	LASU	RED	\top		П	T	╁	CAL	C.	-	П	\top	T	H	\top				╁		1			Н		Т		\top	$\overline{}$	$\overline{}$	\dashv
POINT NO.	SYSTEM APPARATUS OR AREA POINT DESCRIPTION	SPEED (FREQ)	VOLTS	AMPS	VALVE/DAMPER POSITION	TEMPERATURE	STATIC PRESSURE	DIFFERENTIAL PRESSURE	INLET TEMPERATURE	00	02	R410A OLITI ET TEMPERATURE	BTU/HR	RUN TIME	CFM FNTHAI PY	STATUS (DIFF. PRESS.)	STATUS	DAMPER POSITION	HIGH HUM. LIMIT	END SWITCH (ES) POSITION	ENABLE—DISABLE DAMPFR POSITION	VALVE POSITION	DIFFERENTIAL PRESSURE	VALVE POSITION	LOW TEMP LIMIT	HIGH TEMP. LIMIT	HIGH PRESS LIMIT	FAULI HIGH OP LOW LEVEL ALABM	၂	TIME SCHEDULING	ALIEKNAIE TIME DELAY START		SCHEDULE	ALARM(S) TREND INTERVAL (MIN)	RUN TIME TOTALIZE	SHOWN ON GRAPHIC	OVERRIDE ON GRAPHIC
1	TYPICAL SUPPLY VAV				X										Х			Х										Х	X	X			X		5	X	X
2	TYPICAL SPLIT SYSTEM (CU-X/DSS-X)		Х	X >	<	X						X		Х	Х		X				X				Х	X		Х					Х	X 5	5 X	Х	X
3	TYPICAL EXHAUST FAN SYSTEM													Х	X		X				ХХ							Х	X				Х	X 5	5 X	: X	X
4, 5	TYPICAL UNIT DISCHARGE AIR TEMPERATURE					Х																												X 5	5 X	: X	X
6, 7, 8	TYPICAL ZONE TEMPERATURE					X											X								Х			Х						5	5	X	\overline{x}
9, 10	TYPICAL AUTOMATIC CONTROL DAMPERS																			Χ	X							Х	Х				Х	X 5	5	X	X
11	TYPICAL FAN CT SWITCHES																X											Х						X		X	\Box
12, 13	TYPICAL HEATING HOT WATER ACV				Х												Х							Х	Х								Х	X 5	5 X	: X	X
14	TYPICAL CHILLED WATER ACV				X												X							Х	Х								Х	X 5	5 X	: X	X
15	TYPICAL FAN COIL UNIT					X											X								Х			Х					Х	X 5	5 X	: X	X
																																					\prod

Architecture

654 Hay Street, Suite 4
Fayetteville, NC 28301
Phone: (910) 223-2186
E-Mail: gordon@
gordonjohnsonarchitecture.com
© Copyright 2019
Gordon E. Johnson, AIA
Reproduction or publication of this document is not permitted without the expressed consent of the above.

Legal Disclaimer:
This document is intended to comply with the requirements of

virline Terminal Improvements Part 2

HVAC SCHEMATIC DIAGRAM - MISCELLANFOLIS

ort Koda Ile, North Carolina 28306

 \triangleleft

√iiie

DRAWN BY: BMC REVIEWED BY: ALM DATE: 07-19-19 PROJECT NO.: 1808

REVISIONS

500 | 4 | 69.1 | 103.0 | 49.25 | 3.28 | 5.0

1. PROVIDE VFD W/DISCONNECT & BYPASS W/BACNET INTERFACE. 2. 2" PLEATED 30% (MERV 8) AND 12" RIGID 95% (MERV 15) FILTERS

3. PROVIDE 6" BASE RAIL.

4. SEE SPECIFICATION 23 73 13 FOR EQUIVALENT MANUFACTURERS.

5. SUPPORT AHU FROM STRUCTURE ABOVE 6. PROVIDE 2" PLEATED MERV 13 FILTER

							FA	AN	COIL	UNIT	SC	CHE	DU	LE								
DESIGNATION	SERVICE	CFM	FAN SEC ESP FLA INCH	MOTOR	EAT		COOLIN *F TOTAL WB MBH		0.014	MAX H ₂ O PD	ROWS	EAT	LAT	MBH @180°F	@30°F	MAXIMUM H ₂ O PD	MAXIMUM AIR PD	MIN	ELECTRICAL V/PH/Hz	APPROX WEIGHT (LBS)	BASIS OF DESIGN	REMARKS
FCU-1A FCU-1B	MECHANICAL A128 MECHANICAL A129	560 560	1.6 0.00 1.6 0.00	 	80 80	WB DB 67 55.1 67 55.1	54.1 16.3	11.3	2.80 2.80	4.90 4.90	4 4		110.1		△ T 2.0 2.0	FT H₂ O 2.78 2.78	0.13 0.13	2 2	115/1/60 115/1/60	192	TITUS THBE-30 TITUS THBE-30	1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6
FCU-2A	MECHANICAL C117	560	1.6 0.00	 	80		54.1 16.3	11.3	2.80	4.90	4	-	110.1		2.0	2.78	0.13	2	115/1/60		TITUS THBE-30	1, 2, 3, 4, 5, 6

5.0

4.0

1. HORIZONTAL EXPOSED CABINET 4-PIPE FANCOIL W/1" PLEATED FILTER MERV 6, SS DRAIN PAN, 1" CLOSED CELL CABINET INSULATION AND TRACER ZN520 UNIT CONTROLLER W/DEHUMIDIFICATION CONTROL.

2. PROVIDE SINGLE POINT ELECTRICAL CONNECTION W/NEMA-3X STARTER & DISCONNECT AND TERMINAL STRIP FOR VALVE AND FAN SPEED WIRING TERMINATION.

3. PROVIDE 3 SPEED DIRECT DRIVE FAN CONTROL. 4. PROVIDE MOUNTING KIT WITH SPRING ISOLATORS.

5. SEE SPECIFICATION 23 82 19 FOR EQUIVALENT MANUFACTURERS.

6. ON EMERGENCY POWER.

							DUCTL	ESS	SPLI	SYSTE	M S	CHEDULE		
			INDO	OR FAN	l COIL	UNIT			Ol	JTDOOR CONDE	NSING UI	VIT		
		FA	۸N	C	COOLIN	IG COIL								
DESIGNATION	SERVICE	NOMINAL	ESP	EAT	°F	COOLING CAPACITY	MOUNTING	DESIG	POWER INPUT	AMBIENT AIR TEMP °F	SEER	ELECTRICAL	BASIS OF DESIGN	REMARKS
		CFM RANGE	IN H20	DB	WB	SENS TOTAL (MBH)			(W)					
DSS-2	EQUIPMENT B111	320-425	N/A	80	67	- 12	HIGH WALL	CU-2	1,190	95	15.2	208/1/60	PKA-A12HA & PUY-A12NHA3	1, 2, 3, 4, 5, 6
DSS-3	EQUIPMENT G133	320-425	N/A	80	67	- 12	HIGH WALL	CU-3	1,190	95	15.2	208/1/60	PKA-A12HA & PUY-A12NHA3	1, 2, 3, 4, 5, 6
DSS-4B	TELCO B129	320-425	N/A	80	67	- 12	HIGH WALL	CU-4B	1,190	95	15.2	208/1/60	PKA-A12HA & PUY-A12NHA3	1, 2, 3, 4, 5, 6
DSS-6	EQUIPMENT D143	320-425	N/A	80	67	- 12	HIGH WALL	CU-6	1,190	95	15.2	208/1/60	PKA-A12HA & PLIY-A12NHA3	1, 2, 3, 4, 5, 6, 7
DSS-8	STORAGE G124A	320-425	N/A	80	67	18	HIGH WALL	CU-8	1,820	95	18.5	208/1/60	PKA-A18HA7 & PUY-A18NKA/-BS	1, 2, 3, 4, 5, 6

		RELIEF LOUVER SCHI	EDUL	_E			
			DIMEN	ISIONS	GROSS	FREE	
DESIGNATION	SERVICE	TYPE	LENGTH	HEIGHT	AREA	AREA	VELOCITY (FT/MIN)
RL-1	AHU-1	DRAINABLE COMBINATION LOUVER DAMPER	8'-6"	4'-0"	34.0 SF	17.0 SF	500

1. INDOOR UNIT RECEIVES POWER FROM OUTDOOR UNIT THROUGH CONTRACTOR SUPPLIED INTERCONNECTED WIRING. PROVIDE DISCONNECTS AND CONTRO

2. R-410A REFRIGERANT. PROVIDE FACTORY REFRIGERANT PIPING.

4.0

3. PROVIDE NEMA-3R DISCONNECT FOR OUTDOOR UNIT.

4. PROVIDE DISCONNECT SWITCH FOR INDOOR UNIT.

ROLLER.	5.	PROVIDE WALL T-STAT/CONTROLLER.
		SEE SPECIFICATION 23 81 26 FOR EQUIVALENT MANUFACTURERS.
\wedge	7	OUTDOOR AND INDOOR UNIT ARE ASSOCIATED WITH ALTERNATE G-1.8
78)
·		

221

		EXPA	NSION	TAN	< S(CHEC)ULE	
		TANK	MAX. ACCEPTANCE	-	DIMEN	ISIONS	DDY	
DESIGNATION	SERVICE	VOLUME GALLONS	VOLUME GALLONS	TYPE	DIA	HEIGHT	DRY WEIGHT	REMARKS
ET-1	CHILLED WATER	8	2.4	VERTICAL	12"	19.5"	43 LBS	PRESSURIZED DIAPHRAGM TYPE
ET-2	HEATING WATER	44.4	22.6	VERTICAL	16.25"	56"	146 LBS	PRESSURIZED DIAPHRAGM TYPE

					BC	ILER	SCHE	DULE				
			RATINGS	S	GAS PR	ESSURE	VENT					
DESIGNATION	SERVICE	INPUT MBH	OUTPUT MBH	OPERATING PRESSURE PSI	MIN	MAX	STACK DIAMETER INCHES	OPERATING WEIGHT LBS	ELECTRICAL V/ø/HZ	CURRENT FLA AMPS	BASIS OF DESIGN	REMARKS
B-1	AHU, VAV BOXES	3,000	2,790	160	4" WC	14" WC	8"	2,629	460/3/60	5	AERCO BENCHMARK 3000	1, 2
B-2	AHU, VAV BOXES	3,000	2,790	160	4" WC	14" WC	8"	2,629	460/3/60	5	AERCO BENCHMARK 3000	1, 2

1. SEE SPECIFICATION 23 52 23 FOR EQUIVALENT MANUFACTURERS.

2. PROVIDE CONDENSATE NEUTRALIZATION KIT, MOTORIZED VALVES, LOW WATER CUTOFF W/ MANUAL RESET & TEST, AERCO PROTONODE/GATEWAY. PIPE CONDENSATE TO CLOSEST FLOOR DRAIN.

AIR SEPARA	TOR DUTY	
<u>DESIGNATION</u> :	<u>AS-1</u>	<u>AS-2</u>
SERVICE :	CHILLED WATER	HEATING WATER
PIPE SIZE :	8"	6"
WATER FLOW (GPM) :	1,300	700
STRAINER FREE AREA (SQ IN) :	325	205
PRESSURE DROP (FT) :	_	_
CV FACTOR WITH STRAINER :	1,020	632
APPROXIMATE SHIPPING WEIGHT :	460	295
SIZE :	8"	6"
BASIS OF DESIGN (BELL & GOSSETT) :	ROLAIRTROL	ROLAIRTROL
REMARKS : NONE		

AIR COO	LED CHILLER	DUTY
DESIGNATION :	<u>CH-1A</u>	<u>CH-1B</u>
SERVICE :	FAYETTEVILLE AIRPORT	FAYETTEVILLE AIRPORT
CAPACITY :	185 TONS	185 TONS
GPM :	391	391
EWT :	54° F	54° F
LWT :	42° F	42° F
MAS EVAPORATOR PRESSURE DROP :	12.0 FT	12.0 FT
REFRIGERANT :	R-134A	R-134A
AMBIENT TEMPERATURE :	95° F	95° F
FOULING FACTOR :	0.00010	0.00010
COMPRESSORS NUMBER : TYPE : UNLOADING :	1 SCREW 2 STEPS	1 SCREW 2 STEPS
CONDENSER NUMBER OF COILS: COIL ROWS :	1 2	1 2
CONDENSER FANS NUMBER: DIAMETER: RPM: TOTAL AIR FLOW:	13 30" 850 111,600 CFM	13 30" 850 111,600 CFM
FLUID :	25% GLYCOL	25% GLYCOL
ELECTRICAL :	460V/3Ø/60Hz MCA: 378 A MOCP: 500 A	460V/3Ø/60Hz MCA: 378 A MOCP: 500 A
OPERATING WEIGHT :	14,293 LBS	14,293 LBS
BASIS OF DESIGN :	TRANE RTAC	TRANE RTAC
REMARKS : FULL LOAD EFFICIENCY: IPLV:	14.71 EER 10.41 EER	14.71 EER 10.41 EER

	FAN SCHEDULE													
DESIGNATION	SERVICE	CFM	SP INCH H₂O	APPROX RPM	BHP	HP (MOTOR SIZE)	WHEEL DIA	DRIVE	ELECTRICAL V/PH/Hz	APPROX WEIGHT (LBS)	BASIS OF DESIGN (GREENHECK)	REMARKS		
EF-1	A118, B113, B114, B115	1,020	0.548	1140	0.17	1/4	13.125	DIRECT	115/1/60	77	SQ-130-B	1, 5, 6		
EF-2	JANITOR B107	110	0.305	940			7.64	DIRECT	115/1/60	12	SP-110L-VG	2, 5, 6		
EF-3	C105, C106	465	0.266	1300	0.04	1/25	10.875	DIRECT	115/1/60	22	G-090-G	3, 5, 6		
EF-4	G123	75	0.125	900	0.15			DIRECT	115/1/60	9	SP-B80	2, 5, 6		
EF-5	G108, G109, G110, G111, G112	700	0.25	1140	0.07	1/6	11.187	DIRECT	115/1/60	56	SQ-100-B	1, 5, 6		
EF-B2	D114	235	0.266	1300	0.03	1/20	10.875	DIRECT	115/1/60	41	SQ-80-G	1, 5, 6		
EF-B3	D119	75	0.131	900			7.94	DIRECT	115/1/60	9	SP-B80	2, 5, 6		
EF-B4	E206, E207, E210, 214	670	0.309	1550	0.1	1/8	10.875	DIRECT	115/1/60	41	SQ-95-D	1, 5, 6		
EF-B5	E217	75	0.125	900	0.15			DIRECT	115/1/60	9	SP-B80	2, 5, 6		
RF-1	AHU-1	11,645	1.0	1256	5.0	5	30	MULTI	460/3/60		TBI-FS-4L30-50	4, 6		
RF-2	AHU-2	16,600	1.5	1218	8.27	7 1/2	36	MULTI	460/3/60	440	TBI-FS-5L36-75	4, 6		

1. PROVIDE UL LISTING, DISCONNECT SWITCH, MOTORIZED BACKDRAFT DAMPER, AND HANGING SPRING ISOLATORS.

2. PROVIDE DISCONNECT SWITCH AND WALL LOUVERED DISCHARGE. PROVIDE PREFABRICATED ROOF CURB WITH CURB SEAL, UNIT MOUNTED DISCONNECT SWITCH, MOTORIZED BACKDRAFT DAMPER, AND BIRDSCREEN.

4. PROVIDE NEMA 1 DISCONNECT SWITCH, UNIVERSAL MOUNTING BRACKETS, COMPANION FLANGES, AND HANGING ISOLATORS.

5. EXHAUST FAN SHALL BE CONTROLLED BY A TIMECLOCK. 6. SEE SPECIFICATIONS FOR EQUIVALENT MANUFACTURERS.

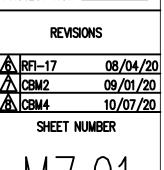
	PUMP SCHEDULE													
DESIGNATION	SERVICE	GPM	HEAD FEET	SUCTION X	МОТ	OR	RPM		ELECTRICAL	BASIS OF DESIGN	REMARKS			
			H 2 O	DISCHARGE	BHP	HP		EFFICIENCY	V/PH/Hz					
PCHP-1A	CHILLED WATER	391	35	6" X 6"	1.18	1.5	1150	73.6	460/3/60	BELL & GOSSETT E-80	1, 4			
PCHP-1B	CHILLED WATER	391	35	6" X 6"	1.18	1.5	1150	73.6	460/3/60	BELL & GOSSETT E-80	1, 4			
PCHP-2	CHILLED WATER	420	35	6" X 6"	1.38	1.5	1150	77.4	460/3/60	BELL & GOSSETT E-80	1, 4			
SCHP-1	CHILLED WATER	690	65	8" X 6"	12.45	15	1150	86.2	460/3/60	BELL & GOSSETT E-1510 6E	2, 4			
SCHP-2	CHILLED WATER	690	65	8" X 6"	12.45	15	1150	86.2	460/3/60	BELL & GOSSETT E-1510 6E	2, 3, 4			
PHWP-1	HEATING WATER	186	20	3" X 3"	1.35	1.5	1719	71.1	460/3/60	BELL & GOSSETT E-80	1			
PHWP-2	HEATING WATER	186	20	3" X 3"	1.35	1.5	1719	71.1	460/3/60	BELL & GOSSETT E-80	1			
HWP-1	HEATING WATER	372	45	3" X 3"	5.29	7.5	1643	75.4	460/3/60	BELL & GOSSETT E-1510 3BD	2			
HWP-2	HEATING WATER	372	45	3" X 3"	5.29	7.5	1643	75.4	460/3/60	BELL & GOSSETT E-1510 3BD	2, 3			

1. PROVIDE VIBRATION HANGERS, HOA STARTER DISCONNECT WITH AUXILIARY CONTRACTS IN NEMA-1 ENCLOSURE. PROVIDE VIBRATION ISOLATION PAD, VFD AND DISCONNECT WITH AUXILIARY CONTRACTS IN NEMA-1 ENCLOSURE.

REDUNDANT, STAND BY.

4. PUMPS SIZED BASED ON 25% GLYCOL SOLUTION.

Architecture Copyright 201 ordon É. Johnson, A Reproduction or publication of this document is not permitted without the expressed consent of the above.



Improvem erminal \vdash

 \sim

9 Air Fayett

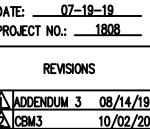
REVIEWED BY: _ALM____ DATE: <u>07-19-19</u> PROJECT NO.: <u>1808</u>

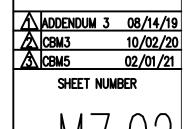
				Al	R D	EVICE SCHEE	DULE
No CFM	SERVICE	TYPE	CFM	SIZE	BLOW	BASIS OF DESIGN	REMARKS
101	SUPPLY	А	0-110	24"x24"	4-WAY	TITUS — TDCA	6"Ø NECK
102	SUPPLY	А	111-210	24"x24"	4-WAY	TITUS — TDCA	8"ø NECK
103	SUPPLY	А	211-330	24"x24"	4-WAY	TITUS — TDCA	10"ø NECK
104	SUPPLY	А	331-590	24"x24"	4-WAY	TITUS — TDCA	12"ø NECK
105	SUPPLY	А	591-850	24"×24"	4-WAY	TITUS — TDCA	12"ø NECK
111	SUPPLY	D	0-110	30Wx6"H	_	TITUS 300-RL	SIDEWALL, DOUBLE DEFLECTION 22.5°, 1/2"
112	SUPPLY	D	0-110	30Wx6"H	_	TITUS 300-RL	SIDEWALL, DOUBLE DEFLECTION 22.5°, 1/2"
113	SUPPLY	D	0-110	30Wx6"H	_	TITUS 300-RL	SIDEWALL, DOUBLE DEFLECTION 22.5°, 1/2"
121	SUPPLY	_	0-180	6"W×4'-0"L	_	TITUS MP-38/ML-38-TZ	6" Ø NECK, 3 SLOTS, 3/4" SLOT SPACING OPPOSED, TECH ZONE
122	SUPPLY	_	0-180	6"W×6'-0"L		•	6" Ø NECK, 3 SLOTS, 3/4" SLOT SPACING OPPOSED, TECH ZONE
123	SUPPLY	_	181-215	6"Wx4'-0"L		•	8" Ø NECK, 3 SLOTS, 3/4" SLOT SPACING OPPOSED, TECH ZONE
124	SUPPLY	_	181-215	6"Wx6'-0"L	+	·	8" Ø NECK, 3 SLOTS, 3/4" SLOT SPACING OPPOSED, TECH ZONE
125	SUPPLY	_	215-250	6"Wx4'-0"L		•	12"x6" OVAL NECK, 3 SLOTS, 3/4" SLOT SPACING OPPOSED, TECH ZONE
126	SUPPLY	_	215-250	6"Wx6'-0"L		·	12"x6" OVAL NECK, 3 SLOTS, 3/4" SLOT SPACING OPPOSED, TECH ZONE
127	SUPPLY	_	251-380	6"Wx4'-0"L		•	14"x8" OVAL NECK, 3 SLOTS, 3/4" SLOT SPACING OPPOSED, TECH ZONE
128	SUPPLY		251-380	6"Wx6'-0"L		·	14"x8" OVAL NECK, 3 SLOTS, 3/4" SLOT SPACING OPPOSED, TECH ZONE
131	SUPPLY	_	0-525	25.75"W×7.75"H	1-WAY	TITUS 271FL	24"X6" NECK. 3/4" BLADE SPACING
132	SUPPLY	_	0-610	15.75"Wx15.75"L		TITUS 271FL	14"X14" NECK. 3/4" BLADE SPACING
133	SUPPLY	_	0-315		2-WAY	TITUS - 300 R	SIDEWALL, DOUBLE DEFLECTION 22.5°, 1/2"
134	SUPPLY	_	0-340	11.75"Wx7.75"H		TITUS 271FL	10"X6" NECK. 3/4" BLADE SPACING
201	RETURN	F	0-1600	24"x24"	_	TITUS - 350 R	24"x24" NECK
~~~	~~~~	~~		~~~~			
211	OUTSIDE AIR	F	0-270	12"Wx12"H	_	PRICE - 530D	WALL MOUNT, DOUBLE DEFLECTION 45°, 3/4"
221	RETURN	_	0-180	6"W×4'-0"L	_	TITLIS MP_38/MI_38_T7	6" Ø NECK, 3 SLOTS, 3/4" SLOT SPACING OPPOSED, TECH ZONE
222	RETURN	_	0-180	6"Wx6'-0"L		•	6" Ø NECK, 3 SLOTS, 3/4" SLOT SPACING OPPOSED, TECH ZONE
223	RETURN	_	181-215	6"W×4'-0"L	+	·	8" Ø NECK, 3 SLOTS, 3/4" SLOT SPACING OPPOSED, TECH ZONE
224	RETURN	_	181-215			,	8" Ø NECK, 3 SLOTS, 3/4" SLOT SPACING OPPOSED, TECH ZONE
225	RETURN	_	215-250			•	12"x6" OVAL NECK, 3 SLOTS, 3/4" SLOT SPACING OPPOSED, TECH ZONE
226	RETURN	_	215-250				12"x6" OVAL NECK, 3 SLOTS, 3/4" SLOT SPACING OPPOSED, TECH ZONE
227	RETURN	_	251-380			,	14"x8" OVAL NECK, 3 SLOTS, 3/4" SLOT SPACING OPPOSED, TECH ZONE
228	RETURN		251-380	6"Wx6'-0"L		,	14"x8" OVAL NECK, 3 SLOTS, 3/4" SLOT SPACING OPPOSED, TECH ZONE
301	EXHAUST	H	0-350	6"x6"	_		6"Ø NECK
302	EXHAUST	H	0-350	12"x12"	_		8"Ø NECK
303	EXHAUST	Н	0-350	12"x12"		TITUS - 350 RL	10"ø NECK

			VARI	ABLE	AIR	VOLU	ME TE	RMINAL F	REHI	EAT	UNIT	SCHE	EDUL	E		
								MAXIMUM		——————————————————————————————————————	EATING COI	L PERFORM	MANCE			
DESIGNATION	SERVICE	TYPE	MAXIMUM	MINIMUM	INLET SIZE	OUTLET SIZE	MINIMUM INLET SP INCH WG	NC VALUE @1.0 INCH WG INLET SP	EAT °F	LAT °F	MBH @180°F EWT	MAXIMUM WATER PD FT WG	NUMBER	GPM @30°F \Delta T	BASIS OF DESIGN	REMARKS
1-01	TICKETING/LOBBY 1	VAV	910	300	12	16x15	1	30	55	95.9	13.3	0.11	1	0.9	TITUS - DESV	1, 2
1-02	TICKETING/LOBBY 2	VAV	725	300	8	12×10	1	30	55	109.2	17.6	0.21	2	1.2	TITUS - DESV	1, 2
1-03	TICKETING/LOBBY 3	VAV	780	300	8	12×10	1	30	55	109.2	17.6	0.21	2	1.2	TITUS - DESV	1, 2
1-04	TICKETING/LOBBY 4	VAV	760	300	8	12x10	1	30	55	109.2	17.6	0.21	2	1.2	TITUS - DESV	1, 2
1-05	TICKETING/LOBBY 5	VAV VAV	440 2920	300 875	16	12x8 24x18	l 1	30	55 55	100.5	14.8 31.7	0.15	l 1	1.0	TITUS — DESV TITUS — DESV	1, 2
1-00	LOUNGE A113	VAV	125	50	6	12x8	1 1	30	55	113.8	3.2	0.07	1	0.3	TITUS - DESV	1, 2
1-08	OFFICES A109, A112, A113	VAV	260	240	6	12x8	1	30	55	82.3	7.1	0.14	1	0.5	TITUS - DESV	1, 2
1-09	OFFICE-A111 BAG STORAGE-A114	VAV	200	80	6	12x8	1	30	55	83	3.3	0.5	1	0.2	TITUS - DESV	1, 2
1-10	OFFICES	VAV	300	300	7	12x10	1	30	55	85.4	9.9	0.26	1	0.7	TITUS - DESV	1, 2
1-11	A120, A122 ELECTRICAL B106	VAV	605	300	8	12×10	1	30	55	85.4	9.9	0.26	1	0.7	TITUS — DESV	1, 2
1-11	BREAK ROOM A127	VAV	250	125	6	12x10	<u> </u> 1	30	55	89.8	4.7	0.28	1 1	0.7	TITUS - DESV	1, 2
1-13	ESCALATOR B112	- VAV	790	300	8	12x10	<u>'</u> 1	30	55	109.2	17.6	0.00	2	1.2	TITUS - DESV	1, 2
1-14	MAIN LOBBY 1		900	300	8	12x10	1	30	55	109.2	17.6	0.21	2	1.2	TITUS — DESV	1, 2
1-15	MAIN LOBBY 2	VAV	500	300	6	12x8	1	30	55	100.5		0.15	2	1.0	TITUS - DESV	1, 2
1-16	MAIN LOBBY 3	VAV	440	300	6	12x8	1	30	55	100.5	14.8	0.15	2	1.0	TITUS - DESV	1, 2
1-17	MAIN LOBBY 4	VAV	790	300	8	12×10	1	30	55	109.2	17.6	0.21	2	1.2	TITUS - DESV	1, 2
1-18	IT/BAG STORAGE 126	VAV	70	45	4	12x8	1	30	_	_	_	_	_	_	TITUS - DESV	1, 2, 3
2-01	MAIN LOBBY 5	VAV	440	300	8	12×10	1	30	55	85.4	9.9	0.26	1	0.7	TITUS - DESV	1, 2
2-02	MAIN LOBBY 6	VAV	500	125	6	12x8	1	30	55	90.5	4.8	0.08	1	0.3	TITUS - DESV	1, 2
2-03	ESCALATOR B119	VAV	900	300	8	12×10	1	30	55	109.2	17.6	0.21	2	1.2	TITUS - DESV	1, 2
2-04	RENTAL OFFICE 1 & 2	VAV	600	300	7	12x10	1	30	55	109.2	17.6	0.21	2	1.2	TITUS - DESV	1, 2
2-05	CONFERENCE B120	VAV VAV	1050	315 420	10	14x12.5 16x15	l	30	55 55	86.9	10.9	0.09	l	0.7	TITUS - DESV TITUS - DESV	1, 2
2-06	BAGGAGE LOBBY 1 RENTAL OFFICE	VAV	1410	420	12	TOXIO	ı	30		90.4	10.1	0.16	l	1.1	11102 - DE21	1, 2
2-07	3 & 4 BAGGAGE CLAIM	VAV	1500	450 600	14	20x17.5	1	30	55 55	95.0	19.7 36.7	0.19	2	1.3	TITUS - DESV	1, 2
2-08 2-09	BAGGAGE LOBBY 2	VAV	1900	570	12	16x15	1 1	30	55	85.6	18.9	0.40	<u>∠</u> 1	1.3	TITUS - DESV	1, 2
2-09	BAGGAGE LOBBY 3	VAV	1350	405	10	14x12.5	<u></u>	30	55	83.7	12.6	0.22	1	0.8	TITUS - DESV	1, 2
2-11	BAGGAGE LOBBY 4	VAV	1700	510	12	16x15	1	30	55	87.3	17.9	0.20	1	1.2	TITUS - DESV	1, 2
2-12	BAGGAGE LOBBY 5	VAV	2030	710	14	20X17.5	1	30	55	90	23.3	0.26	2	1.5	TITUS - DESV	1, 2
2-13	LOUNGE B122 ELECTRICAL	VAV	820	300	8	12x10	1	30	55	109.2	17.6	0.21	2	1.2	TITUS - DESV	1, 2
2-14	B126, B127	VAV	400	300	/	12x10	1	30	55	85.4	9.9	0.15	1	0.7	TITUS — DESV	1, 2
3-01	WAITING G101	VAV	1145	345	12	16×15	1	30	55	95	15.0	0.18	1	1.1	TITUS - DESV	1, 2
3-02	OFFICE G117	VAV	160	100	6	12x8	1	30	55	95	4.3	0.08	1	0.3	TITUS - DESV	1, 2
3-03	CONFERENCE G118	VAV	560	300	8	12x10	1	30	55	85	9.8	0.24	1	0.6	TITUS - DESV	1, 2
3-04	OFFICE G119	VAV	125	100	6	12x8	1	30	55	95	4.3	0.08	1	0.3	TITUS - DESV	1, 2
3-05	ADMINISTRATIVE ASSISTANT G121	VAV	280	100	6	12x8	1	30	55	95	4.3	0.08	1	0.3	TITUS - DESV	1, 2
3-06	LOUNGE G112 RECEPT. G120	VAV	345	200	6	12x8	1	30	55	85	6.5	0.13	1	0.4	TITUS — DESV	1, 2
3-07	VESTIBULE G115 MANAGERS OFFICE LOBBY G116	VAV	550	350	8	12x10	1	30	55	85	11.4	0.49	1	0.9	TITUS - DESV	1, 2
3-08	STORAGE G124 TSA STORAGE G103 BADGING G125	VAV	200	150	6	12x8	1	30	55	85.8	5.0	0.08	1	0.3	TITUS - DESV	1, 2
3-09	TSA SEARCH G104 OFFICE G126	VAV	305	150	6	12x8	1	30	55	85.8	5.0	0.08	1	0.3	TITUS - DESV	1, 2
3-10	OFFICE G131 OFFICE G130	VAV	430	300	6	12x8	1	30	55	95	13.0	0.11	2	0.7	TITUS - DESV	1, 2
3-11	OFFICE G129 OFFICE G128	VAV	495	300	6	12x8	1	30	55	95	13.0	0.11	2	0.7	TITUS - DESV	1, 2
3-12	CONFERENCE G102	VAV	2665	800	14	20x17.5	1	30	55	87.5	26.1	0.27	1	1.6	TITUS — DESV	1, 2
3-13	WAITING	VAV	1890	565	14	20x17.5	1	30	55	95	19.4	0.27	1	0.9	TITUS - DESV	1, 2
3-14	WAITING	VAV	3735	1120	24×16	38×18	1	30	55	95	48.6	1.94	1	3.7	TITUS - DESV	1, 2
3-15	WAITING	VAV	2975	890	24×16		<u>·</u> 1	30	55	95	38.7	0.61	1	2.1	TITUS - DESV	1, 2
3–16	POLICE STATION G107 TOILET G108	VAV	385	200	8		 1	30	55	95	8.7	0.07		0.7	TITUS - DESV	1, 2
J-10	WOMEN G111 MEN G112	VAV	363	200	0	12×10	l 	30))	90	0./	0.07		0.7	IIIUS — DESV	., _
3-17	WAITING	VAV	200	100	6	12x8	11	30	55	95	4.3	0.02	1	0.3	TITUS - DESV	1, 2

	AIR WALL SCHEDULE													
				107715	MAX	AVERAGE OUTLET	ΔIR	OUTLET			ELECTRICAL			
DESIG	SERVICE	MODEL	MOUNTING	NOZZLE WIDTH INCHES	VELOCITY AT NOZZLE (FPM)	OUTLET VELICITY (FPM)	AIR VOLUME (CFM)	VELOCITY UNIFORMITY	NUMBER OF MOTORS		POWER RATING HORSE POWI	HORSE POWER	WEIGHT (LBS)	BASIS OF DESIGN
AW-1	TICKETING VESTIBULE - A100	ALC08-1072A	EXPOSED ABOVE DOOR	72	3,600	2,058	2,072	95%	1	120/1/60	0.32	1/5 HP	64	BERNER
AW-2	VESTIBULE - B100	ALC08-1072A	EXPOSED ABOVE DOOR	72	3,600	2,058	2,072	95%	1	120/1/60	0.32	1/5 HP	64	BERNER
AW-3	VESTIBULE - B100	ALC08-1072A	EXPOSED ABOVE DOOR	72	3,600	2,058	2,072	95%	1	120/1/60	0.32	1/5 HP	64	BERNER
AW-4	BAGGAGE CLAIM VESTIBULE - C100	ALC08-1072A	EXPOSED ABOVE DOOR	72	3,600	2,058	2,072	95%	1	120/1/60	0.32	1/5 HP	64	BERNER

	GRAVITY AIR VENTILATOR SCHEDULE													
DESIG	SERVICE	CFM	AIR PD INCH WG	THROAT VELOCITY (FPM)	THROAT AREA (SF)	HOOD AREA (SF)	WEIGHT (LBS)	BASIS OF DESIGN						
GV-1	AHU-1	12,000	0.2	1,200	10	33.68	164	GREENHECK FGI-22X66						





I Improveme schedules Terminal Airline Airpor Regional

 \sim

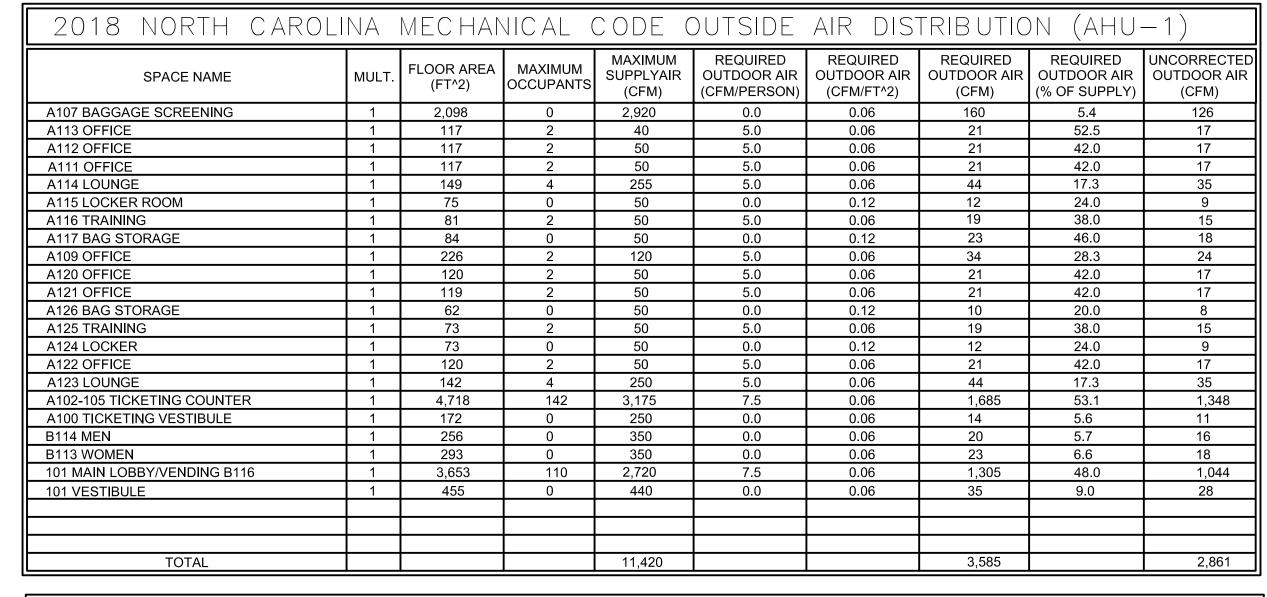
Fayetteville 400 Airport Road Fayetteville, North DRAWN BY: BMC
REVIEWED BY: ALM
DATE: 07-19-19
PROJECT NO.: 1808

PROVIDE INSULATION FOR ALL DIFFUSERS AND GRILLES WITH PLENUM BOXES.
 PROVIDE VOLUME DAMPERS FOR ALL SUPPLY DIFFUSERS, RETURN, AND EXHAUST GRILLES.
 SEE SPECIFICATION 23 37 13 FOR EQUIVALENT MANUFACTURERS.

^{1.} SEE SPECIFICATION 23 36 00 FOR EQUIVALENT MANUFACTUERS.

MOUNT TERMINAL UNITS NO MORE THAN 24" ABOVE CEILING.
 TERMINAL UNIT IS COOLING ONLY.

NOTES:


1. UNITS SHALL BE UL LISTED.

2. UNITS SHALL BE UNHEATED.

^{3.} UNITS SHALL BE MOUNTS 7'-0" AFF

^{4.} CABINETS SHALL BE PROPERLY SUPPORTED AND SECURED TO STRUCTURE PER MANUFACTURE'S RECOMMENDATIONS.
5. COLOR SELECTION AND FINISH BY ARCHITECT.

NOTES:
1. PROVIDE ROOF CURB.
2. COORDINATE ROOF CUB WITH ROOF CONTRACTOR

SPACE NAME	MULT.	FLOOR AREA (FT^2)	MAXIMUM OCCUPANTS	MAXIMUM SUPPLYAIR (CFM)	REQUIRED OUTDOOR AIR (CFM/PERSON)	REQUIRED OUTDOOR AIR (CFM/FT^2)	REQUIRED OUTDOOR AIR (CFM)	REQUIRED OUTDOOR AIR (% OF SUPPLY)	UNCORRECT OUTDOOR A (CFM)
C100 BAGGAGE CLAIM VESTIBULE	1	261	0	580	0.0	0.06	20	29.0	16
C103-C102,C107B-C111B BAGGAGE LOBBY	1	9562	287	8,485	7.5	0.06	3,408	35.6	2,726
C101 OFFICE	1	246	2	300	5.0	0.06	32	10.7	25
C106 WOMEN	1	217	0	225	0.0	0.06	18	8.0	14
C105 MEN	1	227	0	225	0.0	0.06	18	8.0	14
C107 OFFICE	1	115	2	75	5.0	0.06	22	29.3	17
C108 OFFICE	1	217	2	150	5.0	0.06	29	19.3	23
C109 OFFICE	1	227	2	150	5.0	0.06	30	20.0	24
C110 OFFICE	1	222	2	150	5.0	0.06	30	20.0	24
C111 OFFICE	1	222	2	150	5.0	0.06	30	20.0	24
B101,B118 MAIN LOBBY/EXISTING STAIR	1	2250	68	1,840	5.0	0.06	594	32.3	475
B121 STORAGE	1	143	0	50	0.0	0.12	23	46.0	18
B120 CONFERENCE ROOM	1	930	15	950	5.0	0.06	165	17.3	132
B123 PROJECTION ROOM	1	52	0	50	0.0	0.12	9	18.0	7
B122 LOUNGE	1	283	4	820	5.0	0.06	47	5.7	37
C112 OFFICE	1	157	2	50	5.0	0.06	25	50.0	20
C113 OFFICE	1	157	2	50	5.0	0.06	25	50.0	20
C114 OFFICE	1	112	2	140	5.0	0.06	24	17.1	19
	 								
	-								
TOTAL				14,440			4,549		3,635

2018 NORTH CAROLINA M	ECH	ANICAL	CODE	OUTSIE)E AIR D)ISTRIB U	TION (AF	+U-3) E	XISTING
SPACE NAME	MULT.	FLOOR AREA (FT^2)	MAXIMUM OCCUPANTS	MAXIMUM SUPPLYAIR (CFM)	REQUIRED OUTDOOR AIR (CFM/PERSON)	REQUIRED OUTDOOR AIR (CFM/FT^2)	REQUIRED OUTDOOR AIR (CFM)	REQUIRED OUTDOOR AIR (% OF SUPPLY)	
G128 OFFICE	1	182	2	230	5.0	0.06	27	11.7	21
G129 OFFICE	1	230	2	265	5.0	0.06	30	11.3	24
G130 OFFICE	1	204	2	230	5.0	0.06	29	12.6	23
G131 OFFICE	1	184	2	200	5.0	0.06	27	13.5	21
G126 OFFICE	1	221	2	230	5.0	0.06	30	13.0	24
G104 TSA SEARCH	1	132	3	75	5.0	0.06	29	38.7	23
G103 TSA STORAGE	1	120	0	50	5.0	0.12	18	36.0	14
G125 BADGING	1	103	2	100	5.0	0.06	22	22.0	17
G124 STORAGE	1	207	0	50	5.0	0.12	31	62.0	25
G122 LOUNGE	1	339	4	345	5.0	0.06	52	15.1	41
G121 ADMIN. ASSISTANT	1	345	2	280	5.0	0.06	34	12.1	27
G119 OFFICE	1	97	2	125	5.0	0.06	20	16.0	16
G116,G120 MANAGERS OFFICE LOBBY	1	414	2	275	5.0	0.06	44	16.0	35
G132 CORRIDOR	1 1	223	0	200	0.0	0.06	18	9.0	14
G117 OFFICE	1 1	170	2	160	5.0	0.06	25	15.6	20
G115 VESTIBULE	1 1	330	0	225	0.0	0.06	18	8.0	14
G118 CONFERENCE	1 1	375	15	560	5.0	0.06	123	22.0	98
WAITING G101	1 1	8429	293	9,760	7.5	0.06	3379	34.6	2,703
G102 CHECKPOINT G112 MEN	1 1	2323 213	80	2,640 125	7.5	0.06 0.06	925	35.1	740
G112 MEN G111 WOMEN	1 1	213	0		5.0		17	13.0	13
	1 1		0	125	5.0	0.06	18	14.4	14
G107 POLICE STATION	1 1	212	2	85	5.0	0.06	29	34.1	23
TOTAL				16,335			4,945		3,956

2018 NORTH CARC)LINA 1	MECHAN	IICAL C	CODE C	UTSIDE	AIR DIST	RIB UTIO	N (AHU-	-B-12)
SPACE NAME	MULT.	FLOOR AREA (FT^2)	MAXIMUM OCCUPANTS	MAXIMUM SUPPLYAIR (CFM)	REQUIRED OUTDOOR AIR (CFM/PERSON)	REQUIRED OUTDOOR AIR (CFM/FT^2)	REQUIRED OUTDOOR AIR (CFM)	REQUIRED OUTDOOR AIR (% OF SUPPLY)	UNCORRECTED OUTDOOR AIR (CFM)
D134 OFFICE	1	195	2	365	5.0	0.06	28	7.7	22
D131 T.S.A	1	151	0	325	5.0	0.06	12	3.7	9
D128 OFFICE	1	128	2	240	5.0	0.06	23	9.6	18
D123 OFFICE	1	128	2	270	5.0	0.06	23	8.5	18
TOTAL				1,200			86		67

SPACE NAME	MULT.	FLOOR AREA (FT^2)	MAXIMUM OCCUPANTS	MAXIMUM SUPPLYAIR (CFM)	REQUIRED OUTDOOR AIR (CFM/PERSON)	REQUIRED OUTDOOR AIR (CFM/FT^2)	REQUIRED OUTDOOR AIR (CFM)	REQUIRED OUTDOOR AIR (% OF SUPPLY)	UNCORRECT OUTDOOR A (CFM)
D131 T.S.A	1	379	5	500	5.0	0.06	60	12.0	48
D129 OFFICE	1	120	2	120	5.0	0.06	22	18.3	17
D126 T.S.A	1	243	4	200	5.0	0.06	30	15.0	24
D125 OFFICE	1	123	2	190	5.0	0.06	15	7.9	12
D124 OFFICE	1	120	2	190	5.0	0.06	9	4.8	7
TOTAL				1,200			136		108

 \sim Part Terminal Improvements Airline Airport eville Regional

Fayette REVIEWED BY: ALM
DATE: 07-19-19
PROJECT NO.: 1808

REVISIONS

<u>★ ADDENDUM 5 12/19/19</u> SHEET NUMBER